Abstract
Unranked tree languages are valuable in natural language processing for modelling dependency trees. We introduce a new type of automaton for unranked tree languages, called Z-automaton, that is tailored for this particular application. The Z-automaton offers a compact form of representation, and unlike the closely related notion of stepwise automata, does not require a binary encoding of its input. We establish an arc-factored normal form, and prove the membership problem of Z-automata in normal form to be in \( O \left( mn \right) \), where m is the size of the transition table of the Z-automaton and n is the size of the input tree.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brüggemann-Klein, A., Murata, M., Wood, D.: Regular tree and regular hedge languages over unranked alphabets: version 1. Techcial report HKUST-TCSC-2001-0, The Hong Kong University of Science and Technology (2001). http://repository.ust.hk/ir/Record/1783.1-738
Carme, J., Niehren, J., Tommasi, M.: Querying unranked trees with stepwise tree automata. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 105–118. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25979-4_8
Comon, H., et al.: Tree automata techniques and applications. http://www.grappa.univ-lille3.fr/tata. Accessed 12 Oct 2007
Droste, M., Vogler, H.: Weighted logics for unranked tree automata. Theory Comput. Syst. 48(1), 23–47 (2011). https://doi.org/10.1007/s00224-009-9224-4
Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984). https://arxiv.org/abs/1509.06233
Högberg, J., Maletti, A., May, J.: Backward and forward bisimulation minimization of tree automata. Theor. Comput. Sci. 410(37), 3539–3552 (2009). https://doi.org/10.1016/j.tcs.2009.03.022. Preliminary version. In: CIAA 2007
Kübler, S., McDonald, R., Nivre, J.: Dependency Parsing. Morgan and Claypool Publishers, New York (2009). https://doi.org/10.2200/S00169ED1V01Y200901HLT002
Libkin, L.: Logics for unranked trees: an overview. Log. Methods Comput. Sci. 2(3), 1–31 (2006). https://doi.org/10.2168/LMCS-2(3:2)2006
Maletti, A., Graehl, J., Hopkins, M., Knight, K.: The power of extended top-down tree transducers. SIAM J. Comput. 39(2), 410–430 (2009). https://doi.org/10.1137/070699160
Martens, W., Niehren, J.: Minimizing tree automata for unranked trees. In: Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 232–246. Springer, Heidelberg (2005). https://doi.org/10.1007/11601524_15
Martens, W., Niehren, J.: On the minimization of XML schemas and tree automata for unranked trees. J. Comput. System Sci. 73(4), 550–583 (2007). https://doi.org/10.1016/j.jcss.2006.10.021
Acknowledgment
We thank the reviewers for carefully reading the manuscript. In particular, we thank one reviewer who pointed out a flaw in the original version of Theorem 1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Björklund, J., Drewes, F., Satta, G. (2019). Z-Automata for Compact and Direct Representation of Unranked Tree Languages. In: Hospodár, M., Jirásková, G. (eds) Implementation and Application of Automata. CIAA 2019. Lecture Notes in Computer Science(), vol 11601. Springer, Cham. https://doi.org/10.1007/978-3-030-23679-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-23679-3_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-23678-6
Online ISBN: 978-3-030-23679-3
eBook Packages: Computer ScienceComputer Science (R0)