Performance Benchmarking and Optimization for Blockchain Systems: A Survey | SpringerLink
Skip to main content

Performance Benchmarking and Optimization for Blockchain Systems: A Survey

  • Conference paper
  • First Online:
Blockchain – ICBC 2019 (ICBC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11521))

Included in the following conference series:

  • 2801 Accesses

Abstract

Blockchain is a decentralized infrastructure widely used in emerging digital cryptocurrencies. With the fast development of blockchain technology, there are many new achievements in industry and academia. As a decentralized, shared and encrypted distributed ledger technology, blockchain has three distinctive features: decentralization, traceability, and non-tampering. Therefore, the blockchain technology has been used to implement transaction autonomy, save regulatory costs, and improve security. Its birth was even considered to be the fourth industrial revolution. However, the blockchain is still at an early stage of development, and has not been widely applied in practices. One of the main reason is the low performance issue. In order to better understand the state-of-art of the blockchain, we first introduce the architecture and consensus protocols of the current mainstream blockchain systems, then analyze some open source blockchain benchmarking tools, and summarize some blockchain systems optimization methods. Finally, we propose some suggestions for future development of blockchain systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system.https://bitcoin.org/bitcoin.pdf. Accessed 5 May 2019

  2. Fisher, J., Sanchez, M.H.: Authentication and verification of digital data utilizing blockchain technology. U.S. Patent Application No. 15/083, 238 (2016)

    Google Scholar 

  3. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brickell, Ernest F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_10

    Chapter  Google Scholar 

  4. Jakobsson, M., Juels, A.: Proofs of work and bread pudding protocols(extended abstract). In: Preneel, B. (ed.) Secure Information Networks. ITIFIP, vol. 23, pp. 258–272. Springer, Boston, MA (1999). https://doi.org/10.1007/978-0-387-35568-9_18

    Chapter  Google Scholar 

  5. King, S., Nadal, S.: Ppcoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake, vol.19. self-published paper (2012)

    Google Scholar 

  6. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. OSDI 99, 173–186 (1999)

    Google Scholar 

  7. Gervais, A., et al.: On the security and performance of proof of work blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications security, pp. 3–16. ACM (2016)

    Google Scholar 

  8. Sompolinsky, Y., Lewenberg, Y., Zohar, A.: SPECTRE: a fast and scalable cryptocurrency protocol. IACR Cryptology ePrint Archive, pp. 1159 (2016)

    Google Scholar 

  9. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_12

    Chapter  Google Scholar 

  10. Gilad, Y., et al.: Algorand: Scaling byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on Operating Systems Principles, pp. 51–68. ACM (2017)

    Google Scholar 

  11. Dinh, T.T.A., et al.: Blockbench: a framework for analyzing private blockchains. In: Proceedings of the 2017 ACM International Conference on Management of Data, pp. 1085–1100. ACM (2017)

    Google Scholar 

  12. Hyperledger Caliper Homepage. https://hyperledger.github.io/caliper/. Accessed 5 May 2019

  13. Hyperledger Homepage. https://www.hyperledger.org/. Accessed 5 May 2019

  14. Poon, J., Buterin, V.: Plasma: scalable autonomous smart contracts, pp. 1–47. White paper (2017)

    Google Scholar 

  15. Bano, S., Al-Bassam, M., Danezis, G.: The road to scalable blockchain designs. USENIX Secur. 42(4), 31–36 (2017)

    Google Scholar 

  16. Thakkar, P., Nathan, S., Viswanathan, B.: Performance benchmarking and optimizing hyperledger fabric blockchain platform. In: 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 264–276. IEEE (2018)

    Google Scholar 

  17. Eyal, I., et al.: Bitcoin-NG: A scalable blockchain protocol. In: 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI), pp. 45–59 (2016)

    Google Scholar 

  18. Kogias, E.K., et al. Enhancing bitcoin security and performance with strong consistency via collective signing. In: 25th USENIX Security Symposium, USENIX Security 2016, pp. 279–296 (2016)

    Google Scholar 

  19. Boyen, X., Christopher, C., Haines, T.: Blockchain-free cryptocurrencies. A rational framework for truly decentralised fast transactions. IACR Cryptology ePrint Archive, pp. 871 (2016)

    Google Scholar 

  20. Blockchain Whitepaper. http://www.caict.ac.cn/kxyj/qwfb/bps/. Accessed 5 May 2019

  21. IOTA Homepage. https://www.iota.org/. Accessed 5 May 2019

  22. Churyumov, A.: Byteball: A decentralized system for storage and transfer of value. https://byteball.org/Byteball.Pdf(2016)

  23. Baird, L.: The swirldshashgraph consensus algorithm: fair, fast, byzantine fault tolerance. Swirlds Tech Reports SWIRLDS-TR-2016-01, Technical Report (2016)

    Google Scholar 

  24. Wiki, Bitcoin. Block size limit controversy. https://en.bitcoin.it/wiki/Block_size_limit_controversy. Accessed 5 May 2019

  25. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn, S., Ryan, Peter Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4_8

    Chapter  Google Scholar 

  26. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work. In: Clark, J., Meiklejohn, S., Ryan, Peter Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 142–157. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4_10

    Chapter  Google Scholar 

  27. Bentov, I., et al.: Proof of activity: extending Bitcoin’s proof of work via proof of stake. IACR Cryptology ePrint Archive, pp. 452 (2014)

    Google Scholar 

  28. Abd-El-Malek, M., et al.: Fault-scalable Byzantine fault-tolerant services. ACM SIGOPS Oper. Syst. Rev. 39(5), 59–74 (2005)

    Article  Google Scholar 

  29. Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the permissionless model. In: 31st International Symposium on Distributed Computing, DISC 2017. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  30. Ethereum blockchain app platform. https://www.ethereum.org/. Accessed 5 May 2019

  31. Parity. https://www.parity.io/. Accessed 5 May 2019

  32. Chase, J.P.M.: A Permissioned Implementation of Ethereum (2018). https://github.com/jpmorganchase/quorum. Accessed 5 May 2019

  33. Luu, L., et al.: A secure sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS), pp. 17–30. ACM (2016)

    Google Scholar 

  34. Zilliqa. https://zilliqa.com/. Accessed 5 May 2019

  35. ZILLIQA Team: The ZILLIQA Technical Whitepaper (2017)

    Google Scholar 

  36. Ripple. https://ripple.com/. Accessed 5 May 2019

  37. Lerner, S.D.: Dagcoin: a cryptocurrency without blocks (2015). http://bitslog.wordpress.com/2015/09/11/dagcoin

  38. Larimer, D.: Delegated proof-of-stake (DPoS). Bitshare whitepaper (2014)

    Google Scholar 

  39. Lamport, L.: Paxos made simple. ACM Sigact News 32(4), 18–25 (2001)

    Google Scholar 

  40. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm. In: 2014 USENIX Annual Technical Conference, USENIXATC 2014, pp. 305–319 (2014)

    Google Scholar 

Download references

Acknowledgment

This work is supported by China National Basic Research Program (973 Program, No. 2015CB352400), National Natural Science Foundation of China (No. 61572487, 61572488), Equipment Pre-Research Foundation (No. 61400020403), Shenzhen Basic Research Program (No. JCYJ20180302145731531), and Shenzhen Discipline Construction Project for Urban Computing and Data Intelligence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejiang Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, R., Ye, K., Xu, CZ. (2019). Performance Benchmarking and Optimization for Blockchain Systems: A Survey. In: Joshi, J., Nepal, S., Zhang, Q., Zhang, LJ. (eds) Blockchain – ICBC 2019. ICBC 2019. Lecture Notes in Computer Science(), vol 11521. Springer, Cham. https://doi.org/10.1007/978-3-030-23404-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23404-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23403-4

  • Online ISBN: 978-3-030-23404-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics