Autonomous Monitoring of Air Quality Through an Unmanned Aerial Vehicle | SpringerLink
Skip to main content

Autonomous Monitoring of Air Quality Through an Unmanned Aerial Vehicle

  • Conference paper
  • First Online:
Advances and Trends in Artificial Intelligence. From Theory to Practice (IEA/AIE 2019)

Abstract

The monitoring of air quality allows to evaluate the amount of harmful particles for health that are being released. Under this paradigm and knowing the current methods to monitor these parameters, this work proposes the use of a UAV for commercial use and the construction of a card for gas measurement. Additionally and with the objective of having complete control over the vehicle, the article proposes the development of a library for the control and monitoring of the instrumentation of a commercial drone, through which the validation of control algorithms is proposed. As a result of this work, two real experiments on a rural environment and an urban environment are carried out to validate both the library created and the method of acquiring information on air quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12125
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15157
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kumar, P., et al.: The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 75, 199–205 (2015)

    Article  Google Scholar 

  2. Strak, M., et al.: Long-term exposure to particulate matter, NO2 and the oxidative potential of particulates and diabetes prevalence in a large national health survey. Environ. Int. 108(2), 228–236 (2017)

    Article  Google Scholar 

  3. Honda, T., Pun, V.C., Manjourides, J., Suh, H.: Anemia prevalence and hemoglobin levels are associated with long-term exposure to air pollution in an older population. Environ. Int. 101, 125–132 (2017)

    Article  Google Scholar 

  4. Tziviana, L., et al.: Effect of long-term outdoor air pollution and noise on cognitive and psychological functions in adults. Int. J. Hyg. Environ. Health 216, 11 (2014)

    Google Scholar 

  5. Liu, L., et al.: Influence of exposure to coarse, fine and ultrafine urban particulate matter and their biological constituents on neural biomarkers in a randomized controlled crossover study. Environ. Int. 101, 89–95 (2017)

    Article  Google Scholar 

  6. Ortega-García, J.A., López-Hernández, F.A., Cárceles-Álvarez, A., Fuster-Soler, J.L., Sotomayor, D.I., Ramis, R.: Childhood cancer in small geographical areas and proximity to air-polluting industries. Environ. Res. 156(March), 63–73 (2017)

    Article  Google Scholar 

  7. Britton, A.J., Hewison, R.L., Mitchell, R.J., Riach, D.: Pollution and climate change drive long-term change in Scottish wetland vegetation composition. Biol. Conserv. 210(April), 72–79 (2017)

    Article  Google Scholar 

  8. Castell, N., et al.: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 99, 293–302 (2017)

    Article  Google Scholar 

  9. Honda, T., Pun, V.C., Manjourides, J., Suh, H.: Associations between long-term exposure to air pollution, glycosylated hemoglobin and diabetes. Int. J. Hyg. Environ. Health 220(7), 1124–1132 (2017)

    Article  Google Scholar 

  10. Ortiz, J.S., Zapata, C.F., Vega, A.D., Andaluz, V.H.: Path planning based on visual feedback between terrestrial and aerial robots cooperation. In: Zeghloul, S., Romdhane, L., Laribi, M.A. (eds.) Computational Kinematics. MMS, vol. 50, pp. 96–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60867-9_12

    Chapter  Google Scholar 

  11. Andaluz, Víctor H., et al.: Nonlinear controller of quadcopters for agricultural monitoring. In: Bebis, G., et al. (eds.) ISVC 2015. LNCS, vol. 9474, pp. 476–487. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27857-5_43

    Chapter  Google Scholar 

  12. Siebert, S., Teizer, D.J.: Mobile 3D mapping for surveying earthwork using an unmanned aerial vehicle (UAV). J. Chem. Inf. Model. 53(9), 1689–1699 (2013)

    Google Scholar 

  13. Pajares, G.: Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogram. Eng. Remote Sens. 81(4), 281–330 (2015)

    Article  Google Scholar 

  14. Szafranski, G., Czyba, R.: Different approaches of PID control UAV type quadrotor, pp. 70–75 (2011)

    Google Scholar 

  15. Kayacan, E., Maslim, R.: Type-2 fuzzy logic trajectory tracking control of quadrotor VTOL aircraft with elliptic membership functions. IEEE/ASME Trans. Mechatron. 22(1), 339–348 (2017)

    Article  Google Scholar 

  16. Chakravarty, P., Kelchtermans, K., Roussel, T., Wellens, S., Tuytelaars, T., Van Eycken, L.: CNN-based single image obstacle avoidance on a quadrotor, pp. 6369–6374 (2017)

    Google Scholar 

  17. Kahn, G., Villaflor, A., Pong, V., Abbeel, P., Levine, S.: Uncertainty-aware reinforcement learning for collision avoidance (2017)

    Google Scholar 

  18. Emam, M., Fakharian, A.: M. Emam 1, 4993

    Google Scholar 

  19. Abdurrohman, M.Q., et al.: A modified gain schedulling controller by considering the sparseness property of UAV quadrotors. J. Mechatron. Electr. Power Veh. Technol. 6(1), 9 (2015)

    Article  Google Scholar 

  20. Parhizkar, N.: Experimental investigation of rotational control of a constrained quadrotor using backstepping method, no. 1

    Google Scholar 

  21. Chen, F., Lei, W., Zhang, K., Tao, G., Jiang, B.: A novel nonlinear resilient control for a quadrotor UAV via backstepping control and nonlinear disturbance observer. Nonlinear Dyn. 85, 1281–1295 (2016)

    Article  Google Scholar 

  22. Xu, J., Wang, M., Qiao, L.: Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles. Ocean Eng. 105, 54–63 (2015)

    Article  Google Scholar 

  23. Bonna, R., Camino, J.: Trajectory tracking control of a quadrotor using feedback linearization. In: Proceedings of XVII International Symposium on Dynamic Problems of Mechanics, no. 2013 (2015)

    Google Scholar 

  24. Andaluz, V.H., Carvajal, C.P., Pérez, J.A., Proaño, L.E.: Kinematic nonlinear control of aerial mobile manipulators. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10464, pp. 740–749. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65298-6_66

    Chapter  Google Scholar 

  25. Andaluz, V.H., et al.: Robot nonlinear control for unmanned aerial vehicles’ multitasking. Assem. Autom. 38, 645–660 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia–CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017-06; Control Coordinado Multi-operador aplicado a un robot Manipulador Aéreo; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, Universidad Nacional de Chimborazo, and Grupo de Investigación ARSI, for the support to develop this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Víctor H. Andaluz , Geovanny Cuzco , Jessica S. Ortiz , José Morales , Vicente Morales , Darwin S. Sarzosa , Jorge Mora-Aguilar or Gabriela M. Andaluz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andaluz, V.H. et al. (2019). Autonomous Monitoring of Air Quality Through an Unmanned Aerial Vehicle. In: Wotawa, F., Friedrich, G., Pill, I., Koitz-Hristov, R., Ali, M. (eds) Advances and Trends in Artificial Intelligence. From Theory to Practice. IEA/AIE 2019. Lecture Notes in Computer Science(), vol 11606. Springer, Cham. https://doi.org/10.1007/978-3-030-22999-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22999-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22998-6

  • Online ISBN: 978-3-030-22999-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics