Abstract
The monitoring of air quality allows to evaluate the amount of harmful particles for health that are being released. Under this paradigm and knowing the current methods to monitor these parameters, this work proposes the use of a UAV for commercial use and the construction of a card for gas measurement. Additionally and with the objective of having complete control over the vehicle, the article proposes the development of a library for the control and monitoring of the instrumentation of a commercial drone, through which the validation of control algorithms is proposed. As a result of this work, two real experiments on a rural environment and an urban environment are carried out to validate both the library created and the method of acquiring information on air quality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kumar, P., et al.: The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 75, 199–205 (2015)
Strak, M., et al.: Long-term exposure to particulate matter, NO2 and the oxidative potential of particulates and diabetes prevalence in a large national health survey. Environ. Int. 108(2), 228–236 (2017)
Honda, T., Pun, V.C., Manjourides, J., Suh, H.: Anemia prevalence and hemoglobin levels are associated with long-term exposure to air pollution in an older population. Environ. Int. 101, 125–132 (2017)
Tziviana, L., et al.: Effect of long-term outdoor air pollution and noise on cognitive and psychological functions in adults. Int. J. Hyg. Environ. Health 216, 11 (2014)
Liu, L., et al.: Influence of exposure to coarse, fine and ultrafine urban particulate matter and their biological constituents on neural biomarkers in a randomized controlled crossover study. Environ. Int. 101, 89–95 (2017)
Ortega-García, J.A., López-Hernández, F.A., Cárceles-Álvarez, A., Fuster-Soler, J.L., Sotomayor, D.I., Ramis, R.: Childhood cancer in small geographical areas and proximity to air-polluting industries. Environ. Res. 156(March), 63–73 (2017)
Britton, A.J., Hewison, R.L., Mitchell, R.J., Riach, D.: Pollution and climate change drive long-term change in Scottish wetland vegetation composition. Biol. Conserv. 210(April), 72–79 (2017)
Castell, N., et al.: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 99, 293–302 (2017)
Honda, T., Pun, V.C., Manjourides, J., Suh, H.: Associations between long-term exposure to air pollution, glycosylated hemoglobin and diabetes. Int. J. Hyg. Environ. Health 220(7), 1124–1132 (2017)
Ortiz, J.S., Zapata, C.F., Vega, A.D., Andaluz, V.H.: Path planning based on visual feedback between terrestrial and aerial robots cooperation. In: Zeghloul, S., Romdhane, L., Laribi, M.A. (eds.) Computational Kinematics. MMS, vol. 50, pp. 96–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60867-9_12
Andaluz, Víctor H., et al.: Nonlinear controller of quadcopters for agricultural monitoring. In: Bebis, G., et al. (eds.) ISVC 2015. LNCS, vol. 9474, pp. 476–487. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27857-5_43
Siebert, S., Teizer, D.J.: Mobile 3D mapping for surveying earthwork using an unmanned aerial vehicle (UAV). J. Chem. Inf. Model. 53(9), 1689–1699 (2013)
Pajares, G.: Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogram. Eng. Remote Sens. 81(4), 281–330 (2015)
Szafranski, G., Czyba, R.: Different approaches of PID control UAV type quadrotor, pp. 70–75 (2011)
Kayacan, E., Maslim, R.: Type-2 fuzzy logic trajectory tracking control of quadrotor VTOL aircraft with elliptic membership functions. IEEE/ASME Trans. Mechatron. 22(1), 339–348 (2017)
Chakravarty, P., Kelchtermans, K., Roussel, T., Wellens, S., Tuytelaars, T., Van Eycken, L.: CNN-based single image obstacle avoidance on a quadrotor, pp. 6369–6374 (2017)
Kahn, G., Villaflor, A., Pong, V., Abbeel, P., Levine, S.: Uncertainty-aware reinforcement learning for collision avoidance (2017)
Emam, M., Fakharian, A.: M. Emam 1, 4993
Abdurrohman, M.Q., et al.: A modified gain schedulling controller by considering the sparseness property of UAV quadrotors. J. Mechatron. Electr. Power Veh. Technol. 6(1), 9 (2015)
Parhizkar, N.: Experimental investigation of rotational control of a constrained quadrotor using backstepping method, no. 1
Chen, F., Lei, W., Zhang, K., Tao, G., Jiang, B.: A novel nonlinear resilient control for a quadrotor UAV via backstepping control and nonlinear disturbance observer. Nonlinear Dyn. 85, 1281–1295 (2016)
Xu, J., Wang, M., Qiao, L.: Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles. Ocean Eng. 105, 54–63 (2015)
Bonna, R., Camino, J.: Trajectory tracking control of a quadrotor using feedback linearization. In: Proceedings of XVII International Symposium on Dynamic Problems of Mechanics, no. 2013 (2015)
Andaluz, V.H., Carvajal, C.P., Pérez, J.A., Proaño, L.E.: Kinematic nonlinear control of aerial mobile manipulators. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10464, pp. 740–749. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65298-6_66
Andaluz, V.H., et al.: Robot nonlinear control for unmanned aerial vehicles’ multitasking. Assem. Autom. 38, 645–660 (2018)
Acknowledgements
The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia–CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017-06; Control Coordinado Multi-operador aplicado a un robot Manipulador Aéreo; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, Universidad Nacional de Chimborazo, and Grupo de Investigación ARSI, for the support to develop this work.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Andaluz, V.H. et al. (2019). Autonomous Monitoring of Air Quality Through an Unmanned Aerial Vehicle. In: Wotawa, F., Friedrich, G., Pill, I., Koitz-Hristov, R., Ali, M. (eds) Advances and Trends in Artificial Intelligence. From Theory to Practice. IEA/AIE 2019. Lecture Notes in Computer Science(), vol 11606. Springer, Cham. https://doi.org/10.1007/978-3-030-22999-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-22999-3_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-22998-6
Online ISBN: 978-3-030-22999-3
eBook Packages: Computer ScienceComputer Science (R0)