Abstract
In the authors’ previous research, a possible usage of the correlation clustering in rough set theory was investigated. Correlation clustering relies on a tolerance relation. Its output is a partition. The system of base sets can be derived from the partition and a new approximation space appears. This space focuses on the similarity (the tolerance relation) itself and it is different from the covering type approximation space relying on a tolerance relation. In real-world applications, the number of objects is very high. So it can be effective only if a portion of the data points is used. In this paper, a possible method is provided to choose the necessary number of objects that represent the data set. These members are called representatives and it can be useful to use them in the approximation of an arbitrary set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aigner, M.: Enumeration via ballot numbers. Discrete Math. 308(12), 2544–2563 (2008). https://doi.org/10.1016/j.disc.2007.06.012, http://www.sciencedirect.com/science/article/pii/S0012365X07004542
Aszalós, L., Mihálydeák, T.: Rough clustering generated by correlation clustering. In: Ciucci, D., Inuiguchi, M., Yao, Y., Ślȩzak, D., Wang, G. (eds.) RSFDGrC 2013. LNCS (LNAI), vol. 8170, pp. 315–324. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41218-9_34
Aszalós, L., Mihálydeák, T.: Rough classification based on correlation clustering. In: Miao, D., Pedrycz, W., Ślȩzak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS (LNAI), vol. 8818, pp. 399–410. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11740-9_37
Aszalós, L., Mihálydeák, T.: Correlation clustering by contraction. In: 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 425–434. IEEE (2015)
Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)
Becker, H.: A survey of correlation clustering. Advanced Topics in Computational Learning Theory, pp. 1–10 (2005)
Mani, A.: Choice inclusive general rough semantics. Inf. Sci. 181(6), 1097–1115 (2011)
Mihálydeák, T.: Logic on similarity based rough sets. In: Nguyen, H.S., Ha, Q.-T., Li, T., Przybyła-Kasperek, M. (eds.) IJCRS 2018. LNCS (LNAI), vol. 11103, pp. 270–283. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99368-3_21
Nagy, D., Mihálydeák, T., Aszalós, L.: Similarity based rough sets. In: Polkowski, L., et al. (eds.) IJCRS 2017. LNCS (LNAI), vol. 10314, pp. 94–107. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60840-2_7
Nagy, D., Mihálydeák, T., Aszalós, L.: Similarity based rough sets with annotation. In: Nguyen, H.S., Ha, Q.-T., Li, T., Przybyła-Kasperek, M. (eds.) IJCRS 2018. LNCS (LNAI), vol. 11103, pp. 88–100. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99368-3_7
Pawlak, Z.: Rough sets. Int. J. Parallel Prog. 11(5), 341–356 (1982)
Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)
Pawlak, Z., et al.: Rough Sets: Theoretical Aspects of Reasoning About Data. System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)
Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27(2), 245–253 (1996)
Zimek, A.: Correlation clustering. ACM SIGKDD Explor. Newsl. 11(1), 53–54 (2009)
Acknowledgement
Supported by the ÚNKP-18-3 New National Excellence Program of the Ministry of Human Capacities.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Nagy, D., Aszalós, L. (2019). Approximation Based on Representatives. In: Mihálydeák, T., et al. Rough Sets. IJCRS 2019. Lecture Notes in Computer Science(), vol 11499. Springer, Cham. https://doi.org/10.1007/978-3-030-22815-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-22815-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-22814-9
Online ISBN: 978-3-030-22815-6
eBook Packages: Computer ScienceComputer Science (R0)