Abstract
Observing that a motion signal is decomposable into multiple levels, a video generation model which realizes this hypothesis is proposed. The model decomposes motion into a two-level signal involving a global path and local pattern. They are modeled via a latent path in the form of a composite Bezier spline along with a latent sine function respectively. In the application context, the model fills the research gap in its ability to connect an arbitrary number of input key frames smoothly. Experimental results indicate that the model improves in terms of the smoothness of the generated video. In addition, the ability of the model in separating global and local signal has been validated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tulyakov, S., Liu, M.-Y., Yang, X., Kautz, J.: MoCoGAN: decomposing motion and content for video generation. In: CVPR Workshop (2017)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Proceedings of ICLR (2013)
Goodfellow, I.J., et al.: Generative adversarial nets. In: Proceedings of NIPS (2014)
Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: Proceedings of NIPS (2016)
Saito, M., Matsumoto, E., Saito, S.: Temporal generative adversarial nets with singular value clipping. In: Proceedings of ICCV (2017)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. In: Proceedings of ICLR (2016)
Walker, J., Marino, K., Gupta, A., Hebert, M.: Video forecasting by generating pose futures. In: Proceedings of ICCV (2017)
Liang, X., Lee, L., Dai, W., Xing, E.P.: Dual motion GAN for future-flow embedded video prediction. In: Proceedings of ICCV (2017)
Liu, Z., Yeh, R.A., Tang, X., Liu, Y., Agarwala, A.: Video frame synthesis using deep voxel flow. In: Proceedings of ICCV (2017)
Chan, C., Ginosar, S., Zhou, T., Efros, A.A.: Everybody dance now. In: ECCV Workshop (2018)
Wang, T.-C., et al.: Video-to-video synthesis. In: Proceedings of NIPS (2018)
Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of International Conference on Empirical Methods in NLP (2014)
Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: Proceedings of International Conference on Pattern Recognition (2004)
Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: Proceedings of ICCV (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Sin, Z.P.T., Ng, P.H.F., Shiu, S.C.K., Chung, Fl., Leong, H.V. (2019). Multi-level Motion-Informed Approach for Video Generation with Key Frames. In: Gavrilova, M., Chang, J., Thalmann, N., Hitzer, E., Ishikawa, H. (eds) Advances in Computer Graphics. CGI 2019. Lecture Notes in Computer Science(), vol 11542. Springer, Cham. https://doi.org/10.1007/978-3-030-22514-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-22514-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-22513-1
Online ISBN: 978-3-030-22514-8
eBook Packages: Computer ScienceComputer Science (R0)