Robust Angular Local Descriptor Learning | SpringerLink
Skip to main content

Robust Angular Local Descriptor Learning

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11365))

Included in the following conference series:

Abstract

In recent years, the learned local descriptors have outperformed handcrafted ones by a large margin, due to the powerful deep convolutional neural network architectures such as L2-Net [1] and triplet based metric learning [2]. However, there are two problems in the current methods, which hinders the overall performance. Firstly, the widely-used margin loss is sensitive to incorrect correspondences, which are prevalent in the existing local descriptor learning datasets. Second, the L2 distance ignores the fact that the feature vectors have been normalized to unit norm. To tackle these two problems and further boost the performance, we propose a robust angular loss which (1) uses cosine similarity instead of L2 distance to compare descriptors and (2) relies on a robust loss function that gives smaller penalty to triplets with negative relative similarity. The resulting descriptor shows robustness on different datasets, reaching the state-of-the-art result on Brown dataset, as well as demonstrating excellent generalization ability on the Hpatches dataset and a Wide Baseline Stereo dataset.

Supported by grant Pfizer and organization by SAP SE and CNRS INS2IJCJC-INVISANA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/xuyanwu/RAL-Net.

References

  1. Tian, Y., Fan, B., Wu, F.: L2-net: deep learning of discriminative patch descriptor in euclidean space. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6128–6136 (2017)

    Google Scholar 

  2. Mishchuk, A., Mishkin, D., Radenovic, F., Matas, J.: Working hard to know your neighbor’s margins: local descriptor learning loss. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30, pp. 4829–4840. Curran Associates, Inc. (2017)

    Google Scholar 

  3. Choy, C.B., Gwak, J., Savarese, S., Chandraker, M.: Universal correspondence network. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29, pp. 2414–2422. Curran Associates, Inc. (2016)

    Google Scholar 

  4. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  5. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  6. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  7. Fischer, P., Dosovitskiy, A., Brox, T.: Descriptor Matching with Convolutional Neural Networks: a Comparison to SIFT. ArXiv e-prints (2014)

    Google Scholar 

  8. Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., Moreno-Noguer, F.: Discriminative learning of deep convolutional feature point descriptors. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 118–126 (2015)

    Google Scholar 

  9. Han, X., Leung, T., Jia, Y., Sukthankar, R., Berg, A.C.: Matchnet: unifying feature and metric learning for patch-based matching. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3279–3286 (2015)

    Google Scholar 

  10. Zagoruyko, S., Komodakis, N.: Learning to Compare Image Patches via Convolutional Neural Networks. ArXiv e-prints (2015)

    Google Scholar 

  11. Simonyan, K., Vedaldi, A., Zisserman, A.: Learning local feature descriptors using convex optimisation. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1573–1585 (2014)

    Article  Google Scholar 

  12. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18, 509–517 (1975)

    Article  Google Scholar 

  13. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815–823 (2015)

    Google Scholar 

  14. Brown, M., Hua, G., Winder, S.: Discriminative learning of local image descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 33, 43–57 (2011)

    Article  Google Scholar 

  15. Tola, E., Lepetit, V., Fua, P.: A fast local descriptor for dense matching (2008)

    Google Scholar 

  16. Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors, pp. 506–513 (2004)

    Google Scholar 

  17. Balntas, V., Tang, L., Mikolajczyk, K.: Bold - binary online learned descriptor for efficient image matching. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2367–2375 (2015)

    Google Scholar 

  18. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 487–495. Curran Associates, Inc. (2014)

    Google Scholar 

  19. Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1891–1898 (2014)

    Google Scholar 

  20. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735–1742 (2006)

    Google Scholar 

  21. Varior, R.R., Haloi, M., Wang, G.: Gated siamese convolutional neural network architecture for human re-identification. CoRR abs/1607.08378 (2016)

    Google Scholar 

  22. Lin, J., Morère, O., Chandrasekhar, V., Veillard, A., Goh, H.: Deephash: getting regularization, depth and fine-tuning right. CoRR abs/1501.04711 (2015)

    Google Scholar 

  23. Chechik, G., Sharma, V., Shalit, U., Bengio, S.: Large scale online learning of image similarity through ranking. J. Mach. Learn. Res. 11, 1109–1135 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Ustinova, E., Lempitsky, V.: Learning deep embeddings with histogram loss. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29, pp. 4170–4178. Curran Associates, Inc. (2016)

    Google Scholar 

  25. Yu, Y., Yang, M., Xu, L., White, M., Schuurmans, D.: Relaxed clipping: a global training method for robust regression and classification. In: NIPS (2010)

    Google Scholar 

  26. Wu, C., Manmatha, R., Smola, A.J., Krähenbühl, P.: Sampling matters in deep embedding learning. CoRR abs/1706.07567 (2017)

    Google Scholar 

  27. Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition (2018)

    Google Scholar 

  28. Balntas, V., Lenc, K., Vedaldi, A., Mikolajczyk, K.: HPatches: a benchmark and evaluation of handcrafted and learned local descriptors. CoRR abs/1704.05939 (2017)

    Google Scholar 

  29. Mishkin, D., Matas, J., Perdoch, M., Lenc, K.: WxBS: wide baseline stereo generalizations. CoRR abs/1504.06603 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwu Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Gong, M., Liu, T., Batmanghelich, K., Wang, C. (2019). Robust Angular Local Descriptor Learning. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11365. Springer, Cham. https://doi.org/10.1007/978-3-030-20873-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20873-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20872-1

  • Online ISBN: 978-3-030-20873-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics