Capsule Based Image Synthesis for Interior Design Effect Rendering | SpringerLink
Skip to main content

Capsule Based Image Synthesis for Interior Design Effect Rendering

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11365))

Included in the following conference series:

Abstract

Effect rendering that renders 3D model to 2D images with various coloring and lighting effects, is an important step in home interior design. Traditional way of manual rendering using professional software is very labor intensive and time consuming. In this paper, we present a novel capsule based conditional generative adversarial network that can automatically synthesize an indoor image with realistic and aesthetically pleasing rendering effect from a given plain image rendered without any effects from a interior designed 3D model. By adapting capsule blocks in both generator and discriminator and a novel multi-way loss function inside discriminator, our framework is able to generate more realistic rendering effect at both detail and global levels. In addition, a novel line preservation loss is introduced not only to help preserve the properties that are independent of lighting effect, but also improves the lighting effect along those lines. We apply our technique on a dataset specially prepared for interior design effect rendering and systematically compare our approach with multiple state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Autodesk: 3D max. https://www.autodesk.com/products/3ds-max/overview

  2. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3213–3223 (2016)

    Google Scholar 

  3. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 379–387 (2016)

    Google Scholar 

  4. Eitz, M., Hays, J., Alexa, M.: How do humans sketch objects? ACM Trans. Graph. 31(4), 44:1–44:10 (2012)

    Google Scholar 

  5. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2414–2423. IEEE (2016)

    Google Scholar 

  6. Goodfellow, I.J., et al.: Generative adversarial nets. In: International Conference on Neural Information Processing Systems (ICONIP), pp. 2672–2680 (2014)

    Google Scholar 

  7. Hinton, G.E., Krizhevsky, A., Wang, S.D.: Transforming auto-encoders. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 44–51. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_6

    Chapter  Google Scholar 

  8. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976. IEEE (2017)

    Google Scholar 

  9. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  10. Laffont, P.Y., Ren, Z., Tao, X., Qian, C., Hays, J.: Transient attributes for high-level understanding and editing of outdoor scenes. ACM Trans. Graph. (TOG) 33(4), 149 (2014)

    Article  Google Scholar 

  11. Lee, J.H., Lee, S., Zhang, G., Lim, J., Chung, W.K., Suh, I.H.: Outdoor place recognition in urban environments using straight lines. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5550–5557. IEEE (2014)

    Google Scholar 

  12. Li, C., Wand, M.: Precomputed real-time texture synthesis with Markovian generative adversarial networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 702–716. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_43

    Chapter  Google Scholar 

  13. Movshovitz-Attias, Y., Kanade, T., Sheikh, Y.: How useful is photo-realistic rendering for visual learning? In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 202–217. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_18

    Chapter  Google Scholar 

  14. Movshovitz-Attias, Y., Sheikh, Y., Boddeti, V.N., Wei, Z.: 3D pose-by-detection of vehicles via discriminatively reduced ensembles of correlation filters. In: British Machine Vision Conference (BMVC) (2014)

    Google Scholar 

  15. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2536–2544 (2016)

    Google Scholar 

  16. Pu, Y., et al.: Variational autoencoder for deep learning of images, labels and captions. In: Advances in Neural Information Processing Systems (NIPS), pp. 2352–2360 (2016)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances in Neural Information Processing Systems (NIPS), pp. 3859–3869 (2017)

    Google Scholar 

  19. Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic scene completion from a single depth image. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 190–198. IEEE (2017)

    Google Scholar 

  20. Su, H., Qi, C.R., Li, Y., Guibas, L.J.: Render for CNN: viewpoint estimation in images using CNNs trained with rendered 3D model views. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2686–2694 (2015)

    Google Scholar 

  21. Taira, H., et al.: InLoc: indoor visual localization with dense matching and view synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7199–7209 (2018)

    Google Scholar 

  22. Xie, G.-S., Zhang, X.-Y., Liu, C.-L.: Efficient feature coding based on auto-encoder network for image classification. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9003, pp. 628–642. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16865-4_41

    Chapter  Google Scholar 

  23. Yu, A., Grauman, K.: Fine-grained visual comparisons with local learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 192–199 (2014)

    Google Scholar 

  24. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  25. Zhang, Y., et al.: Physically-based rendering for indoor scene understanding using convolutional neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5057–5065. IEEE (2017)

    Google Scholar 

  26. Zhang, Y., Yu, F., Song, S., Xu, P., Seff, A., Xiao, J.: Large-scale scene understanding challenge: room layout estimation (2015). Accessed 15 Sep 2015

    Google Scholar 

  27. Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_36

    Chapter  Google Scholar 

Download references

Acknowledgement

The author acknowledges the financial support from the International Doctoral Innovation Centre, Ningbo Education Bureau, Ningbo Science and Technology Bureau, and the University of Nottingham. This work was also supported by the UK Engineering and Physical Sciences Research Council [grant number EP/L015463/1]. We are grateful for access to the University of Nottingham Ningbo China High Performance Computing Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, F., Lu, Z., Qiu, G., Lin, J., Zhang, Q. (2019). Capsule Based Image Synthesis for Interior Design Effect Rendering. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11365. Springer, Cham. https://doi.org/10.1007/978-3-030-20873-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20873-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20872-1

  • Online ISBN: 978-3-030-20873-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics