Abstract
Effect rendering that renders 3D model to 2D images with various coloring and lighting effects, is an important step in home interior design. Traditional way of manual rendering using professional software is very labor intensive and time consuming. In this paper, we present a novel capsule based conditional generative adversarial network that can automatically synthesize an indoor image with realistic and aesthetically pleasing rendering effect from a given plain image rendered without any effects from a interior designed 3D model. By adapting capsule blocks in both generator and discriminator and a novel multi-way loss function inside discriminator, our framework is able to generate more realistic rendering effect at both detail and global levels. In addition, a novel line preservation loss is introduced not only to help preserve the properties that are independent of lighting effect, but also improves the lighting effect along those lines. We apply our technique on a dataset specially prepared for interior design effect rendering and systematically compare our approach with multiple state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Autodesk: 3D max. https://www.autodesk.com/products/3ds-max/overview
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3213–3223 (2016)
Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 379–387 (2016)
Eitz, M., Hays, J., Alexa, M.: How do humans sketch objects? ACM Trans. Graph. 31(4), 44:1–44:10 (2012)
Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2414–2423. IEEE (2016)
Goodfellow, I.J., et al.: Generative adversarial nets. In: International Conference on Neural Information Processing Systems (ICONIP), pp. 2672–2680 (2014)
Hinton, G.E., Krizhevsky, A., Wang, S.D.: Transforming auto-encoders. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 44–51. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_6
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976. IEEE (2017)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Laffont, P.Y., Ren, Z., Tao, X., Qian, C., Hays, J.: Transient attributes for high-level understanding and editing of outdoor scenes. ACM Trans. Graph. (TOG) 33(4), 149 (2014)
Lee, J.H., Lee, S., Zhang, G., Lim, J., Chung, W.K., Suh, I.H.: Outdoor place recognition in urban environments using straight lines. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5550–5557. IEEE (2014)
Li, C., Wand, M.: Precomputed real-time texture synthesis with Markovian generative adversarial networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 702–716. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_43
Movshovitz-Attias, Y., Kanade, T., Sheikh, Y.: How useful is photo-realistic rendering for visual learning? In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 202–217. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_18
Movshovitz-Attias, Y., Sheikh, Y., Boddeti, V.N., Wei, Z.: 3D pose-by-detection of vehicles via discriminatively reduced ensembles of correlation filters. In: British Machine Vision Conference (BMVC) (2014)
Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2536–2544 (2016)
Pu, Y., et al.: Variational autoencoder for deep learning of images, labels and captions. In: Advances in Neural Information Processing Systems (NIPS), pp. 2352–2360 (2016)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances in Neural Information Processing Systems (NIPS), pp. 3859–3869 (2017)
Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic scene completion from a single depth image. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 190–198. IEEE (2017)
Su, H., Qi, C.R., Li, Y., Guibas, L.J.: Render for CNN: viewpoint estimation in images using CNNs trained with rendered 3D model views. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2686–2694 (2015)
Taira, H., et al.: InLoc: indoor visual localization with dense matching and view synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7199–7209 (2018)
Xie, G.-S., Zhang, X.-Y., Liu, C.-L.: Efficient feature coding based on auto-encoder network for image classification. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9003, pp. 628–642. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16865-4_41
Yu, A., Grauman, K.: Fine-grained visual comparisons with local learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 192–199 (2014)
Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40
Zhang, Y., et al.: Physically-based rendering for indoor scene understanding using convolutional neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5057–5065. IEEE (2017)
Zhang, Y., Yu, F., Song, S., Xu, P., Seff, A., Xiao, J.: Large-scale scene understanding challenge: room layout estimation (2015). Accessed 15 Sep 2015
Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_36
Acknowledgement
The author acknowledges the financial support from the International Doctoral Innovation Centre, Ningbo Education Bureau, Ningbo Science and Technology Bureau, and the University of Nottingham. This work was also supported by the UK Engineering and Physical Sciences Research Council [grant number EP/L015463/1]. We are grateful for access to the University of Nottingham Ningbo China High Performance Computing Facility.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, F., Lu, Z., Qiu, G., Lin, J., Zhang, Q. (2019). Capsule Based Image Synthesis for Interior Design Effect Rendering. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11365. Springer, Cham. https://doi.org/10.1007/978-3-030-20873-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-20873-8_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20872-1
Online ISBN: 978-3-030-20873-8
eBook Packages: Computer ScienceComputer Science (R0)