A Genetic Algorithm and Neural Network Stacking Ensemble Approach to Improve NO2 Level Estimations | SpringerLink
Skip to main content

A Genetic Algorithm and Neural Network Stacking Ensemble Approach to Improve NO2 Level Estimations

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2019)

Abstract

This work investigates the possible improvements that a stacked ensemble can provide to NO2 estimations in a monitoring network located in the Bay of Algeciras (Spain). In the proposed ensemble, ANNs, linear and nonlinear genetic algorithms models have been used as the individual learners in the first stage. The non-linear GA models produce better results than linear GA models as they are able to detect useful relationships between variables that are ignored in the linear case. The outputs of the individual learners have been employed as the inputs of the ANN models of the second stage. The most accurate of these models produced the final NO2 estimation. The obtained results are promising as this final stage-2 model is able to outperform all the other estimation models considered in this work. This can be explained due to its ability to exploit the advantages offered by each individual model from stage-1 and then find an optimal combination of their outputs in order to increase the global estimation performance. The improvement of these NO2 estimations can be very useful to improve the autonomous capacities for monitoring networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13040
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 16301
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Drucker, H., Cortes, C., Jackel, L.D., LeCun, Y., Vapnik, V.: Boosting and other ensemble methods. Neural Comput. 6, 1289–1301 (1994). https://doi.org/10.1162/neco.1994.6.6.1289

    Article  MATH  Google Scholar 

  2. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996). https://doi.org/10.1007/BF00058655

    Article  MathSciNet  MATH  Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  4. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Machine Learning International Workshop, pp. 148–156 (1996)

    Google Scholar 

  5. Ting, K.M., Witten, I.H.: Issues in stacked generalization. J. Artif. Int. Res. 10, 271–289 (1999)

    MATH  Google Scholar 

  6. Rivera, C., et al.: Spatial distribution and transport patterns of NO2 in the Tijuana - San Diego area. Atmos. Pollut. Res. 6, 230–238 (2015)

    Article  Google Scholar 

  7. Finlayson-Pitts, B.J., Pitts, J.N.J.: The atmospheric system. In: Finlayson-Pitts, B.J., Pitts, J.N.J. (eds.) Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications, pp. 15–42. Academic Press, San Diego (2000)

    Chapter  Google Scholar 

  8. Faustini, A., Rapp, R., Forastiere, F.: Nitrogen dioxide and mortality: review and meta-analysis of long-term studies. Eur. Respir. J. 44, 744–753 (2014)

    Article  Google Scholar 

  9. Westmoreland, E.J., Carslaw, N., Carslaw, D.C., Gillah, A., Bates, E.: Analysis of air quality within a street canyon using statistical and dispersion modelling techniques. Atmos. Environ. 41, 9195–9205 (2007)

    Article  Google Scholar 

  10. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L., PDP Research Group (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Foundations, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  11. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989). https://doi.org/10.1016/0893-6080(89)90020-8

    Article  MATH  Google Scholar 

  12. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963)

    Article  MathSciNet  Google Scholar 

  13. Gardner, M.W., Dorling, S.R.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos. Environ. 32, 2627–2636 (1998). https://doi.org/10.1016/S1352-2310(97)00447-0

    Article  Google Scholar 

  14. Turias, I.J., González, F.J., Martin, M.L., Galindo, P.L.: Prediction models of CO, SPM and SO2 concentrations in the Campo de Gibraltar Region, Spain: a multiple comparison strategy. Environ. Monit. Assess. 143, 131–146 (2008). https://doi.org/10.1007/s10661-007-9963-0

    Article  Google Scholar 

  15. Muñoz, E., Martín, M.L., Turias, I.J., Jimenez-Come, M.J., Trujillo, F.J.: Prediction of PM10 and SO2 exceedances to control air pollution in the Bay of Algeciras, Spain. Stoch. Environ. Res. Risk Assess. 28, 1409–1420 (2014). https://doi.org/10.1007/s00477-013-0827-6

    Article  Google Scholar 

  16. Turias, I.J., et al.: Prediction of carbon monoxide (CO) atmospheric pollution concentrations using meteorological variables. WIT Trans. Ecol. Environ. 211, 137–145 (2017). https://doi.org/10.2495/AIR170141

    Article  Google Scholar 

  17. González-Enrique, J., Turias, I.J., Ruiz-Aguilar, J.J., Moscoso-López, J.A., Jerez-Aragonés, J., Franco, L.: Estimation of NO2 concentration values in a monitoring sensor network using a fusion approach. Fresen. Environ. Bull. 28, 681–686 (2019)

    Google Scholar 

  18. González-Enrique, J., Turias, I.J., Ruiz-Aguilar, J.J., Moscoso-López, J.A., Franco, L.: Spatial and meteorological relevance in NO2 estimations. A case study in the Bay of Algeciras (Spain). Stoch. Environ. Res. Risk Assess. 33, 801–815 (2019). https://doi.org/10.1007/s00477-018-01644-0

    Article  Google Scholar 

  19. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  20. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Reading (1989)

    MATH  Google Scholar 

  21. Polikar, R.: Ensemble based systems in decision making. Circuits Syst. Mag. IEEE. 6, 21–45 (2006). https://doi.org/10.1109/MCAS.2006.1688199

    Article  Google Scholar 

  22. Willmott, C.J.: Some comments on the evaluation of model performance. Am. Meteorol. Soc. 63, 1309–1313 (1982)

    Article  Google Scholar 

  23. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32, 675–701 (1937). https://doi.org/10.1080/01621459.1937.10503522

    Article  MATH  Google Scholar 

  24. Hochberg, Y., Tamhane, A.C.: Multiple Comparison Procedures. Wiley, New York (1987)

    Book  Google Scholar 

  25. The Mathworks Inc.: Genetic Algorithm Options. https://es.mathworks.com/help/gads/genetic-algorithm-options.html

Download references

Acknowledgements

This work is part of the coordinated research projects TIN2014-58516-C2-1-R and TIN2014-58516-C2-2-R supported by MICINN (Ministerio de Economía y Competitividad-Spain). Monitoring data have been kindly provided by the Environmental Agency of the Andalusian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier González-Enrique .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

González-Enrique, J., Ruiz-Aguilar, J.J., Moscoso-López, J.A., Van Roode, S., Urda, D., Turias, I.J. (2019). A Genetic Algorithm and Neural Network Stacking Ensemble Approach to Improve NO2 Level Estimations. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11506. Springer, Cham. https://doi.org/10.1007/978-3-030-20521-8_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20521-8_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20520-1

  • Online ISBN: 978-3-030-20521-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics