Fingerprint Retrieval Using a Specialized Ensemble of Attractor Networks | SpringerLink
Skip to main content

Fingerprint Retrieval Using a Specialized Ensemble of Attractor Networks

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11507))

Included in the following conference series:

Abstract

We tested the performance of the Ensemble of Attractor Neural Networks (EANN) model for fingerprint learning and retrieval. The EANN model has proved to increase the random patterns storage capacity, when compared to a single attractor of equal connectivity. In this work, we tested the EANN with real patterns, i.e. fingerprints dataset. The EANN improved the retrieval performance for real patterns more than tripling the capacity of the single attractor with the same number of connections. The EANN modules can also be specialized for different patterns sets according to their characteristics, i.e. pattern/network sparseness (activity). Three EANN modules were assigned with skeletonized fingerprints (low activity), binarized (original) fingerprints (medium activity), and dilated/thickened fingerprint (high activity), and their retrieval was checked. The more sparse the code the larger the storage capacity of the module. The EANN demonstrated to improve the retrieval capacity of the single network, and it can be very helpful for module specialization for different types of real patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hertz, J.A.: Introduction to the Theory of Neural Computation. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  2. González, M., Dominguez, D., Sánchez, Á.: Learning sequences of sparse correlated patterns using small-world attractor neural networks: an application to traffic videos. Neurocomputing 74(14–15), 2361–2367 (2011)

    Article  Google Scholar 

  3. Barra, A., Bernacchia, A., Santucci, E., Contucci, P.: On the equivalence of hopfield networks and Boltzmann machines. Neural Networks 34, 1–9 (2012)

    Article  Google Scholar 

  4. González, M., Dominguez, D., Rodríguez, F.B., Sanchez, A.: Retrieval of noisy fingerprint patterns using metric attractor networks. Int. J. Neural Syst. 24(07), 1450025 (2014)

    Article  Google Scholar 

  5. Fachechi, A., Agliari, E., Barra, A.: Dreaming neural networks: forgetting spurious memories and reinforcing pure ones. Neural Networks 112, 24–40 (2019)

    Article  Google Scholar 

  6. Gonzalez, M., Dominguez, D., Sanchez, A., Rodriguez, F.B.: Increase attractor capacity using an ensembled neural network. Expert Syst. Appl. 71, 206–215 (2017)

    Article  Google Scholar 

  7. González, M., Dominguez, D., Sánchez, Á., Rodríguez, F.B.: Capacity and retrieval of a modular set of diluted attractor networks with respect to the global number of neurons. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10305, pp. 497–506. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59153-7_43

    Chapter  Google Scholar 

  8. Doria, F., Erichsen Jr., R., González, M., Rodríguez, F.B., Sánchez, Á., Dominguez, D.: Structured patterns retrieval using a metric attractor network: application to fingerprint recognition. Physica A 457, 424–436 (2016)

    Article  MathSciNet  Google Scholar 

  9. Jiang, L., Zhao, T., Bai, C., Yong, A., Wu, M.: A direct fingerprint minutiae extraction approach based on convolutional neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 571–578. IEEE (2016)

    Google Scholar 

  10. Tang, Y., Gao, F., Feng, J., Liu, Y.: Fingernet: an unified deep network for fingerprint minutiae extraction. In: 2017 IEEE International Joint Conference on Biometrics (IJCB), pp. 108–116. IEEE (2017)

    Google Scholar 

  11. Dominguez, D., González, M., Rodríguez, F.B., Serrano, E., Erichsen Jr., R., Theumann, W.: Structured information in sparse-code metric neural networks. Physica A 391(3), 799–808 (2012)

    Article  Google Scholar 

  12. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    Article  MathSciNet  Google Scholar 

  13. Dominguez, D., González, M., Serrano, E., Rodríguez, F.B.: Structured information in small-world neural networks. Phys. Rev. E 79(2), 021909 (2009)

    Article  Google Scholar 

  14. González, M., del Mar Alonso-Almeida, M., Avila, C., Dominguez, D.: Modeling sustainability report scoring sequences using an attractor network. Neurocomputing 168, 1181–1187 (2015)

    Article  Google Scholar 

  15. Dorizzi, B., et al.: Fingerprint and on-line signature verification competitions at ICB 2009. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 725–732. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01793-3_74

    Chapter  Google Scholar 

  16. Dominguez, D., Bollé, D.: Self-control in sparsely coded networks. Phys. Rev. Lett. 80(13), 2961 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by Spanish project of Ministerio de Economía y Competitividad/FEDER TIN2017-84452-R (http://www.mineco.gob.es/), UDLA SIS MGR.18.02, UAM-Santander CEAL-AL/2017-08. The authors gratefully acknowledge the support offered by the CYTED Network: “Ibero-American Thematic Network on ICT Applications for Smart Cities” (Ref: 518RT0559).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

González, M., Dávila, C., Dominguez, D., Sánchez, Á., Rodriguez, F.B. (2019). Fingerprint Retrieval Using a Specialized Ensemble of Attractor Networks. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11507. Springer, Cham. https://doi.org/10.1007/978-3-030-20518-8_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20518-8_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20517-1

  • Online ISBN: 978-3-030-20518-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics