Abstract
We tested the performance of the Ensemble of Attractor Neural Networks (EANN) model for fingerprint learning and retrieval. The EANN model has proved to increase the random patterns storage capacity, when compared to a single attractor of equal connectivity. In this work, we tested the EANN with real patterns, i.e. fingerprints dataset. The EANN improved the retrieval performance for real patterns more than tripling the capacity of the single attractor with the same number of connections. The EANN modules can also be specialized for different patterns sets according to their characteristics, i.e. pattern/network sparseness (activity). Three EANN modules were assigned with skeletonized fingerprints (low activity), binarized (original) fingerprints (medium activity), and dilated/thickened fingerprint (high activity), and their retrieval was checked. The more sparse the code the larger the storage capacity of the module. The EANN demonstrated to improve the retrieval capacity of the single network, and it can be very helpful for module specialization for different types of real patterns.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hertz, J.A.: Introduction to the Theory of Neural Computation. CRC Press, Boca Raton (2018)
González, M., Dominguez, D., Sánchez, Á.: Learning sequences of sparse correlated patterns using small-world attractor neural networks: an application to traffic videos. Neurocomputing 74(14–15), 2361–2367 (2011)
Barra, A., Bernacchia, A., Santucci, E., Contucci, P.: On the equivalence of hopfield networks and Boltzmann machines. Neural Networks 34, 1–9 (2012)
González, M., Dominguez, D., Rodríguez, F.B., Sanchez, A.: Retrieval of noisy fingerprint patterns using metric attractor networks. Int. J. Neural Syst. 24(07), 1450025 (2014)
Fachechi, A., Agliari, E., Barra, A.: Dreaming neural networks: forgetting spurious memories and reinforcing pure ones. Neural Networks 112, 24–40 (2019)
Gonzalez, M., Dominguez, D., Sanchez, A., Rodriguez, F.B.: Increase attractor capacity using an ensembled neural network. Expert Syst. Appl. 71, 206–215 (2017)
González, M., Dominguez, D., Sánchez, Á., Rodríguez, F.B.: Capacity and retrieval of a modular set of diluted attractor networks with respect to the global number of neurons. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10305, pp. 497–506. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59153-7_43
Doria, F., Erichsen Jr., R., González, M., Rodríguez, F.B., Sánchez, Á., Dominguez, D.: Structured patterns retrieval using a metric attractor network: application to fingerprint recognition. Physica A 457, 424–436 (2016)
Jiang, L., Zhao, T., Bai, C., Yong, A., Wu, M.: A direct fingerprint minutiae extraction approach based on convolutional neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 571–578. IEEE (2016)
Tang, Y., Gao, F., Feng, J., Liu, Y.: Fingernet: an unified deep network for fingerprint minutiae extraction. In: 2017 IEEE International Joint Conference on Biometrics (IJCB), pp. 108–116. IEEE (2017)
Dominguez, D., González, M., Rodríguez, F.B., Serrano, E., Erichsen Jr., R., Theumann, W.: Structured information in sparse-code metric neural networks. Physica A 391(3), 799–808 (2012)
Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)
Dominguez, D., González, M., Serrano, E., Rodríguez, F.B.: Structured information in small-world neural networks. Phys. Rev. E 79(2), 021909 (2009)
González, M., del Mar Alonso-Almeida, M., Avila, C., Dominguez, D.: Modeling sustainability report scoring sequences using an attractor network. Neurocomputing 168, 1181–1187 (2015)
Dorizzi, B., et al.: Fingerprint and on-line signature verification competitions at ICB 2009. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 725–732. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01793-3_74
Dominguez, D., Bollé, D.: Self-control in sparsely coded networks. Phys. Rev. Lett. 80(13), 2961 (1998)
Acknowledgments
This work was funded by Spanish project of Ministerio de Economía y Competitividad/FEDER TIN2017-84452-R (http://www.mineco.gob.es/), UDLA SIS MGR.18.02, UAM-Santander CEAL-AL/2017-08. The authors gratefully acknowledge the support offered by the CYTED Network: “Ibero-American Thematic Network on ICT Applications for Smart Cities” (Ref: 518RT0559).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
González, M., Dávila, C., Dominguez, D., Sánchez, Á., Rodriguez, F.B. (2019). Fingerprint Retrieval Using a Specialized Ensemble of Attractor Networks. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11507. Springer, Cham. https://doi.org/10.1007/978-3-030-20518-8_59
Download citation
DOI: https://doi.org/10.1007/978-3-030-20518-8_59
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20517-1
Online ISBN: 978-3-030-20518-8
eBook Packages: Computer ScienceComputer Science (R0)