Abstract
Bioinformatics pipelines dealing with analysis of sequences of aminoacids are tricky. It is not easy to match the input and outputs of stand-alone applications that sometimes were developed for quite different kinds of sequences. In this paper we propose a tool for the guided and safe composition of pipelines to treat a specific kind of sequences. This tool can easily extend to more general bioinformatics setting. Cross-Linking Immuno Precipitation associated to high-throughput sequencing (CLIP-seq) has been recently developed aiming to uncover the RNA-protein interaction genome-wide. Specifically PhotoActivable-Ribonucleoside-enhanced-CLIP (PAR-CLIP) has been proposed to achieve single-nucleotide resolution. A critical step in the analysis of PAR-CLIP sequences is peak calling. Specific methods propose probabilistic models based on its substitution properties, allowing for a more accurate detection of RNA-protein interaction sites. The pipeline construction tool proposed here can be used for systematic comparison of the effect of the choice of peak calling method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Althammer, S., González-Vallinas, J., Ballaré, C., Beato, M., Eyras, E.: Pyicos: a versatile toolkit for the analysis of high-throughput sequencing data. Bioinformatics 27(24), 3333–3340 (2011)
Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B (Methodol.) 57(1), 289–300 (1995)
Bolger, A.M., Lohse, M., Usadel, B.: Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30(15), 2114–2120 (2014)
Bottini, S., Pratella, D., Grandjean, V., Repetto, E., Trabucchi, M.: Recent computational developments on CLIP-seq data analysis and microRNA targeting implications. Briefings Bioinf. 19(6), 1290–1301 (2017)
Chen, B., Yun, J., Kim, M.S., Mendell, J.T., Xie, Y.: PIPE-CLIP: a comprehensive online tool for CLIP-seq data analysis. Genome Biol. 15, R18 (2014)
Chen, C., Khaleel, S.S., Huang, H., Cathy, H.W.: Software for pre-processing illumina next-generation sequencing short read sequences. Source Code Biol. Med. 9(1), 8 (2014)
Comoglio, F., Sievers, C., Paro, R.: Sensitive and highly resolved identification of RNA-protein interaction sites in PAR-CLIP data. BMC Bioinf. 16, 32 (2015)
Corcoran, D.L., et al.: PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol. 12, R79 (2011)
Dobin, A., et al.: STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1), 15–21 (2013)
Echaniz, O., Graña, M.: A comparison of par-clip peak calling approaches on noisy data. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2017–2023, December 2018
Echaniz, O., Graña, M.: BIOTHINGS: a tool to create safe and sound bioinformatics pipelines, February 2019. https://doi.org/10.5281/zenodo.2580383
Erhard, F., Dölken, L., Jaskiewicz, L., Zimmer, R.: PARma: identification of microRNA target sites in AGO-PAR-CLIP data. Genome Biol. 14, R79 (2013)
Garzia, A., Morozov, P., Sajek, M., Meyer, C., Tuschl, T.: PAR-CLIP for discovering target sites of RNA-binding proteins. In: Lamandé, S.R. (ed.) mRNA Decay. MMB, vol. 1720, pp. 55–75. Springer, New York (2018). https://doi.org/10.1007/978-1-4939-7540-2_5
Golumbeanu, M., Mohammadi, P., Beerenwinkel, N.: BMix: probabilistic modeling of occurring substitutions in PAR-CLIP data. Bioinformatics 32(7), 976–983 (2016)
Charles, G.E., Bailey, T.L., Noble, W.S.: FIMO: scanning for occurrences of a given motif. Bioinformatics 27(7), 1017–1018 (2011)
Hafner, M., et al.: Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1), 129–141 (2010)
Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10(3), R25 (2009)
Sievers, C., Schlumpf, T., Sawarkar, R., Comoglio, F., Paro, R.: Mixture models and wavelet transforms reveal high confidence RNA-protein interaction sites in MOV10 PAR-CLIP data. Nucleic Acids Res. 40(20), e160 (2012)
Sims, D., Sudbery, I., Ilott, N.E., Heger, A., Ponting, C.P.: Sequencing depth and coverage: key considerations in genomic analyses. Nat. Rev. Genet. 15, 121 (2014)
Smith, A.D., et al.: Updates to the RMAP short-read mapping software. Bioinformatics 25(21), 2841–2842 (2009)
Webb, S., Hector, R.D., Kudla, G., Granneman, S.: PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast. Genome Biol. 15, R8 (2014)
Acknowledgments
This work has been partially supported by FEDER funds through MINECO project TIN2017-85827-P.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Echaniz, O., Graña, M. (2019). BIOTHINGS: A Pipeline Creation Tool for PAR-CLIP Sequence Analsys. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Understanding the Brain Function and Emotions. IWINAC 2019. Lecture Notes in Computer Science(), vol 11486. Springer, Cham. https://doi.org/10.1007/978-3-030-19591-5_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-19591-5_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-19590-8
Online ISBN: 978-3-030-19591-5
eBook Packages: Computer ScienceComputer Science (R0)