Emotion Detection in Aging Adults Through Continuous Monitoring of Electro-Dermal Activity and Heart-Rate Variability | SpringerLink
Skip to main content

Emotion Detection in Aging Adults Through Continuous Monitoring of Electro-Dermal Activity and Heart-Rate Variability

  • Conference paper
  • First Online:
Understanding the Brain Function and Emotions (IWINAC 2019)

Abstract

This paper introduces a system composed of hardware, control software, signal processing and classification for the deployment of a wearable with a high ability to discriminate among seven emotional states (neutral, affection, amusement, anger, disgust, fear and sadness). The study described in this proposal focuses on comparing the emotional states of young and older people by means of two physiological parameters, namely electro-dermal activity and heart-rate variability, both captured from the wearable. The wearable emotion detection system is trained by eliciting the desired emotions on eighty young (16 to 26 years old) and fifty older adults (aged 60 to 84) through a film mood induction procedure. Seventeen features are calculated on skin conductance response and heart-rate variability data. Then, these features are classified by a support vector machines. State amusement reached a high number of hits (87.4%), whilst affection received the lowest rate of hits (82.5%). The negative emotion with lowest value is anger (82.4%) and the highest is disgust (85.9%).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Serrano, J.P., Latorre, J.M., Gatz, M.: Spain: promoting the welfare of older adults in the context of population aging. Gerontologist 54(5), 733–740 (2014). https://doi.org/10.1093/geront/gnu010

    Article  Google Scholar 

  2. Castillo, J.C., Castro-Gonzalez, A., Fernandez-Caballero, A., Latorre, J.M., Pastor, J.M., Fernandez-Santos, A., Salichs, M.A.: Software architecture for smart emotion recognition and regulation of the ageing adult. Cogn. Comput. 8(2), 357–367 (2016). https://doi.org/10.1007/s12559-016-9383-y

    Article  Google Scholar 

  3. Sokolova, M.V., Fernández-Caballero, A.: A review on the role of color and light in affective computing. Appl. Sci. 5(3), 275–293 (2015). https://doi.org/10.3390/app5030275

    Article  Google Scholar 

  4. Fernández-Sotos, A., Fernández-Caballero, A., Latorre, J.M.: Influence of tempo and rhythmic unit in musical emotion regulation. Front. Comput. Neurosci. 10, 80 (2016). https://doi.org/10.3389/fncom.2016.00080

    Article  Google Scholar 

  5. Fernández-Caballero, A., et al.: Smart environment architecture for emotion detection and regulation. J. Biomed. Inform. 64, 55–73 (2016). https://doi.org/10.1016/j.jbi.2016.09.015

    Article  Google Scholar 

  6. Fernández-Caballero, A., Latorre, J.M., Pastor, J.M., Fernández-Sotos, A.: Improvement of the elderly quality of life and care through smart emotion regulation. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 348–355. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13105-4_50

    Chapter  Google Scholar 

  7. Fernández-Aguilar, L., et al.: Emotional induction through films: a model for the regulation of emotions. In: Chen, Y.-W., Tanaka, S., Howlett, R.J., Jain, L.C. (eds.) Innovation in Medicine and Healthcare 2016. SIST, vol. 60, pp. 15–23. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39687-3_2

    Chapter  Google Scholar 

  8. Fernández-Aguilar, L., Ricarte, J.J., Ros, L., Latorre, J.M.: Emotional differences in young and older adults: films as mood induction procedure. Front. Psychol. 9, 1110 (2018). https://doi.org/10.3389/fpsyg.2018.01110

    Article  Google Scholar 

  9. Malik, M., et al.: Heart rate variability standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17, 354–381 (1996)

    Article  Google Scholar 

  10. Zangróniz, R., Martínez-Rodrigo, A., López, M.T., Pastor, J.M., Fernández-Caballero, A.: Estimation of mental distress from photoplethysmography. Appl. Sci. 8, 69 (2018). https://doi.org/10.3390/app8010069

    Article  Google Scholar 

  11. Zangróniz, R., Martínez-Rodrigo, A., Pastor, J.M., López, M.T., Fernández-Caballero, A.: Electrodermal activity sensor for classification of calm/distress condition. Sensors 17, 2324 (2017). https://doi.org/10.3390/s17102324

    Article  Google Scholar 

  12. Martínez-Rodrigo, A., Alcaraz, R., Rieta, J.J.: Application of the phasor transform for automatic delineation of single lead ECG fiducial points. Physiol. Meas. 31, 1467 (2010). https://doi.org/10.1088/0967-3334/31/11/005

    Article  Google Scholar 

  13. Martínez-Rodrigo, A., Fernández-Caballero, A., Silva, F., Novais, P.: Monitoring electrodermal activity for stress recognition using a wearable. In: Ambient Intelligence and Smart Environments, pp. 416–425 (2016). https://doi.org/10.3233/978-1-61499-690-3-416

  14. Martínez-Rodrigo, A., Zangróniz, R., Pastor, J.M., Fernández-Caballero, A.: Arousal level classification in the ageing adult by measuring electrodermal skin conductivity. In: Bravo, J., Hervás, R., Villarreal, V. (eds.) AmIHEALTH 2015. LNCS, vol. 9456, pp. 213–223. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26508-7_21

    Chapter  Google Scholar 

  15. Martínez-Rodrigo, A., Zangróniz, R., Pastor, J.M., Sokolova, M.V.: Arousal level classification of the aging adult from electro-dermal activity: from hardware development to software architecture. Pervasive Mob. Comput. 34, 46–59 (2017). https://doi.org/10.1016/j.pmcj.2016.04.006

    Article  Google Scholar 

  16. Fernández, C.F., Mateos, J.C.P., Ribaudi, J.S., Fernández-Abascal, E.G.: Spanish validation of an emotion-eliciting set of films. Psicothema 23, 778–785 (2011)

    Google Scholar 

  17. Gross, J.J., Levenson, R.W.: Emotion elicitation using films. Cogn. Emot. 9, 87–108 (1995). https://doi.org/10.1080/02699939508408966

    Article  Google Scholar 

  18. Schaefer, A., Nils, F., Sanchez, X., Philippot, P.: Assessing the effectiveness of a large database of emotion-eliciting films: a new tool for emotion researchers. Cogn. Emot. 24, 1153–1172 (2010). https://doi.org/10.1080/02699930903274322

    Article  Google Scholar 

  19. Boucsein, W.: Electrodermal Activity. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4614-1126-0

    Book  Google Scholar 

  20. Benedek, M., Kaernbach, C.: A continuous measure of phasic electrodermal activity. J. Neurosci. Methods 190, 80–91 (2010). https://doi.org/10.1016/j.jneumeth.2010.04.028

    Article  Google Scholar 

  21. Malik, M.: Heart rate variability. Ann. Noninvasive Electrocardiol. 1, 151–181 (1996). https://doi.org/10.1111/j.1542-474X.1996.tb00275.x

    Article  Google Scholar 

  22. Allen, J.: Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28, R1 (2007). https://doi.org/10.1088/0967-3334/28/3/R01

    Article  Google Scholar 

  23. Martínez-Rodrigo, A., Zangróniz, R., Pastor, J.M., Latorre, J.M., Fernández-Caballero, A.: Emotion detection in ageing adults from physiological sensors. In: Mohamed, A., Novais, P., Pereira, A., Villarrubia González, G., Fernández-Caballero, A. (eds.) Ambient Intelligence - Software and Applications. AISC, vol. 376, pp. 253–261. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19695-4_26

    Chapter  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by Spanish Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación (AEI)/European Regional Development Fund (FEDER, UE) under DPI2016-80894-R grant. Arturo Martínez-Rodrigo holds 2018/11744 grant from European Regional Development Fund (FEDER, UE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Fernández-Caballero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fernández-Aguilar, L., Martínez-Rodrigo, A., Moncho-Bogani, J., Fernández-Caballero, A., Latorre, J.M. (2019). Emotion Detection in Aging Adults Through Continuous Monitoring of Electro-Dermal Activity and Heart-Rate Variability. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Understanding the Brain Function and Emotions. IWINAC 2019. Lecture Notes in Computer Science(), vol 11486. Springer, Cham. https://doi.org/10.1007/978-3-030-19591-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19591-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19590-8

  • Online ISBN: 978-3-030-19591-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics