Abstract
This paper introduces a system composed of hardware, control software, signal processing and classification for the deployment of a wearable with a high ability to discriminate among seven emotional states (neutral, affection, amusement, anger, disgust, fear and sadness). The study described in this proposal focuses on comparing the emotional states of young and older people by means of two physiological parameters, namely electro-dermal activity and heart-rate variability, both captured from the wearable. The wearable emotion detection system is trained by eliciting the desired emotions on eighty young (16 to 26 years old) and fifty older adults (aged 60 to 84) through a film mood induction procedure. Seventeen features are calculated on skin conductance response and heart-rate variability data. Then, these features are classified by a support vector machines. State amusement reached a high number of hits (87.4%), whilst affection received the lowest rate of hits (82.5%). The negative emotion with lowest value is anger (82.4%) and the highest is disgust (85.9%).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Serrano, J.P., Latorre, J.M., Gatz, M.: Spain: promoting the welfare of older adults in the context of population aging. Gerontologist 54(5), 733–740 (2014). https://doi.org/10.1093/geront/gnu010
Castillo, J.C., Castro-Gonzalez, A., Fernandez-Caballero, A., Latorre, J.M., Pastor, J.M., Fernandez-Santos, A., Salichs, M.A.: Software architecture for smart emotion recognition and regulation of the ageing adult. Cogn. Comput. 8(2), 357–367 (2016). https://doi.org/10.1007/s12559-016-9383-y
Sokolova, M.V., Fernández-Caballero, A.: A review on the role of color and light in affective computing. Appl. Sci. 5(3), 275–293 (2015). https://doi.org/10.3390/app5030275
Fernández-Sotos, A., Fernández-Caballero, A., Latorre, J.M.: Influence of tempo and rhythmic unit in musical emotion regulation. Front. Comput. Neurosci. 10, 80 (2016). https://doi.org/10.3389/fncom.2016.00080
Fernández-Caballero, A., et al.: Smart environment architecture for emotion detection and regulation. J. Biomed. Inform. 64, 55–73 (2016). https://doi.org/10.1016/j.jbi.2016.09.015
Fernández-Caballero, A., Latorre, J.M., Pastor, J.M., Fernández-Sotos, A.: Improvement of the elderly quality of life and care through smart emotion regulation. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 348–355. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13105-4_50
Fernández-Aguilar, L., et al.: Emotional induction through films: a model for the regulation of emotions. In: Chen, Y.-W., Tanaka, S., Howlett, R.J., Jain, L.C. (eds.) Innovation in Medicine and Healthcare 2016. SIST, vol. 60, pp. 15–23. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39687-3_2
Fernández-Aguilar, L., Ricarte, J.J., Ros, L., Latorre, J.M.: Emotional differences in young and older adults: films as mood induction procedure. Front. Psychol. 9, 1110 (2018). https://doi.org/10.3389/fpsyg.2018.01110
Malik, M., et al.: Heart rate variability standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17, 354–381 (1996)
Zangróniz, R., Martínez-Rodrigo, A., López, M.T., Pastor, J.M., Fernández-Caballero, A.: Estimation of mental distress from photoplethysmography. Appl. Sci. 8, 69 (2018). https://doi.org/10.3390/app8010069
Zangróniz, R., Martínez-Rodrigo, A., Pastor, J.M., López, M.T., Fernández-Caballero, A.: Electrodermal activity sensor for classification of calm/distress condition. Sensors 17, 2324 (2017). https://doi.org/10.3390/s17102324
Martínez-Rodrigo, A., Alcaraz, R., Rieta, J.J.: Application of the phasor transform for automatic delineation of single lead ECG fiducial points. Physiol. Meas. 31, 1467 (2010). https://doi.org/10.1088/0967-3334/31/11/005
Martínez-Rodrigo, A., Fernández-Caballero, A., Silva, F., Novais, P.: Monitoring electrodermal activity for stress recognition using a wearable. In: Ambient Intelligence and Smart Environments, pp. 416–425 (2016). https://doi.org/10.3233/978-1-61499-690-3-416
Martínez-Rodrigo, A., Zangróniz, R., Pastor, J.M., Fernández-Caballero, A.: Arousal level classification in the ageing adult by measuring electrodermal skin conductivity. In: Bravo, J., Hervás, R., Villarreal, V. (eds.) AmIHEALTH 2015. LNCS, vol. 9456, pp. 213–223. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26508-7_21
Martínez-Rodrigo, A., Zangróniz, R., Pastor, J.M., Sokolova, M.V.: Arousal level classification of the aging adult from electro-dermal activity: from hardware development to software architecture. Pervasive Mob. Comput. 34, 46–59 (2017). https://doi.org/10.1016/j.pmcj.2016.04.006
Fernández, C.F., Mateos, J.C.P., Ribaudi, J.S., Fernández-Abascal, E.G.: Spanish validation of an emotion-eliciting set of films. Psicothema 23, 778–785 (2011)
Gross, J.J., Levenson, R.W.: Emotion elicitation using films. Cogn. Emot. 9, 87–108 (1995). https://doi.org/10.1080/02699939508408966
Schaefer, A., Nils, F., Sanchez, X., Philippot, P.: Assessing the effectiveness of a large database of emotion-eliciting films: a new tool for emotion researchers. Cogn. Emot. 24, 1153–1172 (2010). https://doi.org/10.1080/02699930903274322
Boucsein, W.: Electrodermal Activity. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4614-1126-0
Benedek, M., Kaernbach, C.: A continuous measure of phasic electrodermal activity. J. Neurosci. Methods 190, 80–91 (2010). https://doi.org/10.1016/j.jneumeth.2010.04.028
Malik, M.: Heart rate variability. Ann. Noninvasive Electrocardiol. 1, 151–181 (1996). https://doi.org/10.1111/j.1542-474X.1996.tb00275.x
Allen, J.: Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28, R1 (2007). https://doi.org/10.1088/0967-3334/28/3/R01
Martínez-Rodrigo, A., Zangróniz, R., Pastor, J.M., Latorre, J.M., Fernández-Caballero, A.: Emotion detection in ageing adults from physiological sensors. In: Mohamed, A., Novais, P., Pereira, A., Villarrubia González, G., Fernández-Caballero, A. (eds.) Ambient Intelligence - Software and Applications. AISC, vol. 376, pp. 253–261. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19695-4_26
Acknowledgments
This work has been partially supported by Spanish Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación (AEI)/European Regional Development Fund (FEDER, UE) under DPI2016-80894-R grant. Arturo Martínez-Rodrigo holds 2018/11744 grant from European Regional Development Fund (FEDER, UE).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Fernández-Aguilar, L., Martínez-Rodrigo, A., Moncho-Bogani, J., Fernández-Caballero, A., Latorre, J.M. (2019). Emotion Detection in Aging Adults Through Continuous Monitoring of Electro-Dermal Activity and Heart-Rate Variability. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Understanding the Brain Function and Emotions. IWINAC 2019. Lecture Notes in Computer Science(), vol 11486. Springer, Cham. https://doi.org/10.1007/978-3-030-19591-5_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-19591-5_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-19590-8
Online ISBN: 978-3-030-19591-5
eBook Packages: Computer ScienceComputer Science (R0)