Abstract
Since emotions affect physical and psychologically the health of people, their identification is crucial for understanding human behavior. Despite the several systems developed in this regard, most of them underperform on people with disabilities, their setup is sensitive to noise or non-emotional stimuli. Recent studies consider electroencephalographic (EEG) signals for understanding emotional responses due to reflecting the activity of the central nervous system. However, the non-stationary nature of EEG signals demand elaborated signal processing approaches because not all time instants hold information related to the stimulus-response. This work proposes a temporal analysis approach, termed MILRES, based on the Multi-Instance Learning framework that includes a multiple instance Regularization with LASSO penalty and an Embedded instance Selection. We test MILRES in discriminating two states (high and low) of the valence and arousal emotional dimensions from the DEAP dataset. The proposed approach reaches \(84.4\%\) accuracy and \(79.5\%\) F1-score for valence, and \(81.9\%\) accuracy \(67.9\%\) for arousal. Such results evidence that MILRES outperforms other EEG-based emotion recognition approaches from the state-of-the-art, with the additional benefit of identifying the brain areas involved in processing emotions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Vallat-Azouvi, C., Azouvi, P., Le-Bornec, G., Brunet-Gouet, E.: Treatment of social cognition impairments in patients with traumatic brain injury: a critical review. Brain injury 33(1), 87–93 (2019)
Frau-Meigs, D.: Media education. A kit for teachers, students parents and professionals. UNESCO (2007)
Picard, R.W., et al.: Affective learning-a manifesto. BT Technol. J. 22(4), 253–269 (2004)
Wang, F., Lv, J., Ying, G., Chen, S., Zhang, C.: Facial expression recognition from image based on hybrid features understanding. J. Vis. Commun. Image Represent. 59, 84–88 (2019)
Bourel, F., Chibelushi, C.C., Low, A.A.: Robust facial expression recognition using a state-based model of spatially-localised facial dynamics. In: Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 113–118. IEEE (2002)
Schuller, B., Reiter, S., Muller, R., Al-Hames, M., Lang, M., Rigoll, G.: Speaker independent speech emotion recognition by ensemble classification. In: IEEE International Conference on Multimedia and Expo, ICME 2005, pp. 864–867. IEEE (2005)
Purnamasari, P.D., Ratna, A.A.P., Kusumoputro, B.: Development of filtered bispectrum for EEG signal feature extraction in automatic emotion recognition using artificial neural networks. Algorithms 10(2), 63 (2017)
Nasoz, F., Lisetti, C., Alvarez, K., Finkelstein, N.: Emotion recognition from physiological signals for user modeling of affect. In: proceedings of the 9th International Conference on User Model, Pittsburg, USA, pp. 22–26 (2003)
Petrantonakis, P.C., Hadjileontiadis, L.J.: Emotion recognition from EEG using higher order crossings. IEEE Trans. Inf. Technol. Biomed. 14(2), 186–197 (2010)
Paus, T., Sipila, P., Strafella, A.: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an eeg study. J. Neurophysiol. 86(4), 1983–1990 (2001)
Sourina, O., Liu, Y.: A fractal-based algorithm of emotion recognition from EEG using arousal-valence model. In: Biosignals, pp. 209–214 (2011)
Jie, X., Cao, R., Li, L.: Emotion recognition based on the sample entropy of EEG. Bio-med. Mater. Eng. 24(1), 1185–1192 (2014)
Kroupi, E., Yazdani, A., Ebrahimi, T.: EEG correlates of different emotional states elicited during watching music videos. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011. LNCS, vol. 6975, pp. 457–466. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24571-8_58
Hjorth, B.: EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. 29(3), 306–310 (1970)
Wang, X.-W., Nie, D., Lu, B.-L.: EEG-based emotion recognition using frequency domain features and support vector machines. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011. LNCS, vol. 7062, pp. 734–743. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24955-6_87
Chanel, G., Ansari-Asl, K., Pun, T.: Valence-arousal evaluation using physiological signals in an emotion recall paradigm. In: IEEE International Conference on Systems, Man and Cybernetics, ISIC, pp. 2662–2667. IEEE (2007)
Hadjidimitriou, S.K., Hadjileontiadis, L.J.: Toward an EEG-based recognition of music liking using time-frequency analysis. IEEE Trans. Biomed. Eng. 59(12), 3498–3510 (2012)
Mohammadi, Z., Frounchi, J., Amiri, M.: Wavelet-based emotion recognition system using eeg signal. Neural Comput. Appl. 28(8), 1985–1990 (2017)
Alazrai, R., Homoud, R., Alwanni, H., Daoud, M.: EEG-based emotion recognition using quadratic time-frequency distribution. Sensors 18(8), 2739 (2018)
Kaplan, A.Y., Fingelkurts, A.A., Fingelkurts, A.A., Borisov, S.V., Darkhovsky, B.S.: Nonstationary nature of the brain activity as revealed by EEG/MEG: methodological, practical and conceptual challenges. Signal Process. 85(11), 2190–2212 (2005)
Sanei, S., Chambers, J.: Fundamentals of EEG Signal Processing, pp. 35–125. Wiley, Hoboken (2013). Chapter 2
Zhang, X., et al.: Emotion recognition based on electroencephalogram using a multiple instance learning framework. In: Huang, De-Shuang, Jo, Kang-Hyun, Zhang, Xiao-Long (eds.) ICIC 2018. LNCS, vol. 10955, pp. 570–578. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95933-7_66
Babenko, B., Yang, M.-H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)
Zhang, C., Platt, J.C., Viola, P.A.: Multiple instance boosting for object detection. In: Advances in Neural Information Processing Systems, pp. 1417–1424 (2006)
Pappas, N., Popescu-Belis, A.: Explicit document modeling through weighted multiple-instance learning. J. Artif. Intell. Res. 58, 591–626 (2017)
Koelstra, S., et al.: DEAP: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012)
Lang, P.J.: The emotion probe: studies of motivation and attention. Am. Psychol. 50(5), 372 (1995)
Chen, R.-B., et al.:Multiple-instance logistic regression with lasso penalty. arXiv preprint arXiv:1607.03615 (2016)
Chen, P.-Y., Chen, C.-C., Yang, C.-H., Chang, S.-M., Lee, K.-J.: milr: Multiple-instance logistic regression with lasso penalty. R J. 9(1), 446–457 (2017)
Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1 (2010)
Chen, Y., Bi, J., Wang, J.Z.: MILES: multiple-instance learning via embedded instance selection. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 1931–1947 (2006)
Wang, J., Zucker, J.-D.: Solving multiple-instance problem: a lazy learning approach (2000)
Zheng, W.-L., Zhu, J.-Y., Lu, B.-L.: Identifying stable patterns over time for emotion recognition from EEG. IEEE Trans. Affect. Comput. (2017)
Zhuang, N., Zeng, Y., Tong, L., Zhang, C., Zhang, H., Yan, B.: Emotion recognition from EEG signals using multidimensional information in EMD domain. BioMed Res. Int. (2017)
Bermpohl, F., et al.: Attentional modulation of emotional stimulus processing: an fmri study using emotional expectancy. Hum. Brain Mapp. 27(8), 662–677 (2006)
Rämä, P., Martinkauppi, S., Linnankoski, I., Koivisto, J., Aronen, H.J., Carlson, S.: Working memory of identification of emotional vocal expressions: an fMRI study. Neuroimage 13(6), 1090–1101 (2001)
Deppe, M., Schwindt, W., Kugel, H., Plassmann, H., Kenning, P.: Nonlinear responses within the medial prefrontal cortex reveal when specific implicit information influences economic decision making. J. Neuroimag. 15(2), 171–182 (2005)
Pelletier, M., et al.: Separate neural circuits for primary emotions? Brain activity during self-induced sadness and happiness in professional actors. Neuroreport 14(8), 1111–1116 (2003)
Lane, R.D., Chua, P.M., Dolan, R.J.: Common effects of emotional valence, arousal and attention on neural activation during visual processing of pictures. Neuropsychologia 37(9), 989–997 (1999)
Gillath, O., Bunge, S.A., Shaver, P.R., Wendelken, C., Mikulincer, M.: Attachment-style differences in the ability to suppress negative thoughts: exploring the neural correlates. Neuroimage 28(4), 835–847 (2005)
Acknowledgment
This work is developed within the framework of the research project “programa reconstrucción del tejido social en zonas de pos-conflicto en Colombia del proyecto Fortalecimiento docente desde la alfabetización mediática Informacional y la CTel, como estrategia didáctico-pedagógica y soporte para la recuperación de la confianza del tejido social afectado por el conflicto, Código SIGP 58950” funded by “Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación, Fondo Francisco José de Caldas con contrato No 213-2018 con Código 58960”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Caicedo-Acosta, J., Cárdenas-Peña, D., Collazos-Huertas, D., Padilla-Buritica, J.I., Castaño-Duque, G., Castellanos-Dominguez, G. (2019). Multiple-Instance Lasso Regularization via Embedded Instance Selection for Emotion Recognition. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Understanding the Brain Function and Emotions. IWINAC 2019. Lecture Notes in Computer Science(), vol 11486. Springer, Cham. https://doi.org/10.1007/978-3-030-19591-5_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-19591-5_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-19590-8
Online ISBN: 978-3-030-19591-5
eBook Packages: Computer ScienceComputer Science (R0)