System of Recommendation and Automatic Correction of Web Accessibility Using Artificial Intelligence | SpringerLink
Skip to main content

System of Recommendation and Automatic Correction of Web Accessibility Using Artificial Intelligence

  • Conference paper
  • First Online:
Advances in Usability and User Experience (AHFE 2019)

Abstract

This work presents the development of a Web system that allows the identification, evaluation and automatic correction of Web accessibility barriers associated with multimedia elements. The analysis carried out by the tool takes into account the conformance level A of WCAG 2.0 standard. Web system takes as input the URL of the Web page to be evaluated to connect and send the evaluation request to three Web Content Analysis APIs: OAW, Tenon, and Achecker. The results of the evaluations are sent to the artificial intelligence services of Google, to obtain an adequate description of multimedia items that are not correctly labeled. Finally, the system proposes a holistic automatic correction of the website source code and allows the result to be exported. To test the effectiveness of the tool were evaluated 54 websites, in different sectors such as government, education, finance, etc. The results show an average increase of 2.57% in web accessibility conformance level, reaching a maximum increase of 24%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wille, K., Dumke, R.R., Wille, C.: Measuring the accessability based on web content accessibility guidelines. In: 2016 Joint Conference of the International Workshop on Software Measurement and the International Conference on Software Process and Product Measurement (IWSM-MENSURA). IEEE (2016)

    Google Scholar 

  2. Pascual, A., Ribera, M., Granollers, T.: Impact of web accessibility barriers on users with a hearing impairment. Dyna 82(193), 233–240 (2015)

    Article  Google Scholar 

  3. Word Wide Web Consortium (W3C). https://www.w3.org/Consortium/mission

  4. Web Accessibility Initiative (WAI). https://www.w3.org/WAI/

  5. Introduction to Web Accessibility Web Accessibility Initiative. https://www.w3.org/WAI/fundamentals/accessibility-intro.oster

  6. ISO-Information technology. https://www.iso.org/standard/58625.html

  7. W3C-Web Content Accessibility Guidelines (WCAG) 2.0. https://www.w3.org/TR/WCAG20/

  8. W3C-Web Accessibility Evaluation Tools List. https://www.w3.org/WAI/ER/tools/

  9. Timbi-Sisalima, C., et al.: Comparative analysis of online web accessibility evaluation tools (2016)

    Google Scholar 

  10. Di Lucca, G.A., Fasolino, A.R., Tramontana, P.: Web site accessibility: identifying and fixing accessibility problems in client page code. In: Seventh IEEE International Symposium on Web Site Evolution. IEEE (2005)

    Google Scholar 

  11. Von Ahn, L., et al.: Improving accessibility of the web with a computer game. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM (2006)

    Google Scholar 

  12. Bigham, J.P., et al.: WebInSight: making web images accessible. In: Proceedings of the 8th International ACM SIGACCESS Conference on Computers and Accessibility. ACM (2006)

    Google Scholar 

  13. Elkabani, I., et al.: Toward better web accessibility. In: 2015 5th International Conference on Information and Communication Technology and Accessibility (ICTA). IEEE (2015)

    Google Scholar 

  14. Vigo, M., Brown, J., Conway, V.: Benchmarking web accessibility evaluation tools: measuring the harm of sole reliance on automated tests. In: Proceedings of the 10th International Cross-Disciplinary Conference on Web Accessibility. ACM (2013)

    Google Scholar 

  15. Acosta-Vargas, P., et al.: Toward a combined method for evaluation of web accessibility. In: International Conference on Information Theoretic Security. Springer, Cham (2018)

    Chapter  Google Scholar 

  16. Zambrano, J.H.L., Pico, R.J.M., Cagua, N.V.A.: Metodología para valorar y clasificar herramientas de evaluación de accesibilidad web. e-Ciencias de la Información 8.1 (2018)

    Google Scholar 

  17. Dongaonkar, S.U., Vadali, R.S., Dhutadmal, C.: Accessibility analyzer: tool for new adaptations in government web applications to improve accessibility. In: 2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA). IEEE (2017)

    Google Scholar 

  18. Keysers, D., Renn, M., Breuel, T.M.: Improving accessibility of HTML documents bygenerating image-tags in a proxy. In: Proceedings of the 9th International ACM SIGACCESS Conference on Computers and Accessibility. ACM (2007)

    Google Scholar 

  19. Vigo, M., Harper, S.: Real-time detection of navigation problems on the World ‘Wild’ Web. Int. J. Hum Comput Stud. 101, 1–9 (2017)

    Article  Google Scholar 

  20. Ponce, J.P.: Ranking Redes Sociales, Sitios Web y Aplicaciones Móviles Ecuador (2017). http://blog.formaciongerencial.com/ranking-redes-sociales-sitios-web-aplicaciones-moviles-ecuador-2017/

  21. Alexa - Top Sites by Category. https://www.alexa.com/topsites/category/World/Espa%C3%B1ol/Regional/Am%C3%A9rica/Ecuador

  22. He, R.Y.: Design and implementation of web based on Laravel framework. In: 2014 International Conference on Computer Science and Electronic Technology (ICCSET 2014). Atlantis Press (2015)

    Google Scholar 

Download references

Acknowledgments

This work was supported by IDEIAGEOCA Research Group of Universidad Politécnica Salesiana in Quito, Ecuador.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulina Morillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morillo, P., Chicaiza-Herrera, D., Vallejo-Huanga, D. (2020). System of Recommendation and Automatic Correction of Web Accessibility Using Artificial Intelligence. In: Ahram, T., Falcão, C. (eds) Advances in Usability and User Experience. AHFE 2019. Advances in Intelligent Systems and Computing, vol 972. Springer, Cham. https://doi.org/10.1007/978-3-030-19135-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19135-1_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19134-4

  • Online ISBN: 978-3-030-19135-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics