A Coarse-Grained Representation for Discretizable Distance Geometry with Interval Data | SpringerLink
Skip to main content

A Coarse-Grained Representation for Discretizable Distance Geometry with Interval Data

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11465))

Abstract

We propose a coarse-grained representation for the solutions of discretizable instances of the Distance Geometry Problem (DGP). In several real-life applications, the distance information is not provided with high precision, but an approximation is rather given. We focus our attention on protein instances where inter-atomic distances can be either obtained from the chemical structure of the molecule (which are exact), or through experiments of Nuclear Magnetic Resonance (which are generally represented by real-valued intervals). The coarse-grained representation allows us to extend a previously proposed algorithm for the Discretizable DGP (DDGP), the branch-and-prune (BP) algorithm. In the standard BP, atomic positions are fixed to unique positions at every node of the search tree: we rather represent atomic positions by a pair consisting of a feasible region, together with a most-likely position for the atom in this region. While the feasible region is a constant during the search, the associated position can be refined by considering the new distance constraints that appear at further layers of the search tree. To perform the refinement task, we integrate the BP algorithm with a spectral projected gradient algorithm. Some preliminary computational experiments on artificially generated instances show that this new approach is quite promising to tackle real-life DGPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almeida, F.C.L., Moraes, A.H., Gomes-Neto, F.: An overview on protein structure determination by NMR, historical and future perspectives of the use of distance geometry methods. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.) Distance Geometry: Theory, Methods and Applications, pp. 377–412. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-5128-0_18

    Chapter  MATH  Google Scholar 

  2. Alves, R., Lavor, C.: Geometric algebra to model uncertainties in the discretizable molecular distance geometry problem. Adv. Appl. Clifford Algebra 27, 439–452 (2017)

    Article  MathSciNet  Google Scholar 

  3. Barzilai, J., Borwein, J.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)

    Article  MathSciNet  Google Scholar 

  4. Berman, H., et al.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  5. Billinge, S.J.L., Duxbury, Ph.M., Gonçalves, D.S., Lavor, C., Mucherino, A.: Recent results on assigned and unassigned distance geometry with applications to protein molecules and nanostructures. Ann. Oper. Res. (2018, to appear)

    Google Scholar 

  6. Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10, 1196–1211 (2000)

    Article  MathSciNet  Google Scholar 

  7. Cassioli, A., et al.: An algorithm to enumerate all possible protein conformations verifying a set of distance restraints. BMC Bioinform. 16, 23 (2015). p. 15

    Article  Google Scholar 

  8. Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. Wiley, Hoboken (1988)

    MATH  Google Scholar 

  9. de Leeuw, J.: Convergence of the majorization method for multidimensional scaling. J. Classif. 5, 163–180 (1988)

    Article  MathSciNet  Google Scholar 

  10. Glunt, W., Hayden, T.L., Raydan, M.: Molecular conformations from distance matrices. J. Comput. Chem. 14(1), 114–120 (1993)

    Article  Google Scholar 

  11. Glunt, W., Hayden, T.L., Raydan, M.: Preconditioners for distance matrix algorithms. J. Comput. Chem. 15, 227–232 (1994)

    Article  Google Scholar 

  12. Gonçalves, D.S., Mucherino, A.: Optimal partial discretization orders for discretizable distance geometry. Int. Trans. Oper. Res. 23(5), 947–967 (2016)

    Article  MathSciNet  Google Scholar 

  13. Gonçalves, D.S., Mucherino, A., Lavor, C.: An adaptive branching scheme for the Branch & Prune algorithm applied to distance geometry. In: IEEE Conference Proceedings, Federated Conference on Computer Science and Information Systems (FedCSIS 2014), Workshop on Computational Optimization (WCO 2014), Warsaw, Poland, pp. 463–469 (2014)

    Google Scholar 

  14. Gonçalves, D.S., Mucherino, A., Lavor, C., Liberti, L.: Recent advances on the interval distance geometry problem. J. Global Optim. 69(3), 525–545 (2017)

    Article  MathSciNet  Google Scholar 

  15. Gramacho, W., Mucherino, A., Lin, J.-H., Lavor, C.: A new approach to the discretization of multidimensional scaling. In: IEEE Conference Proceedings, Federated Conference on Computer Science and Information Systems (FedCSIS 2016), Workshop on Computational Optimization (WCO 2016), Gdansk, Poland, pp. 601–609 (2016)

    Google Scholar 

  16. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: Recent advances on the discretizable molecular distance geometry problem. Eur. J. Oper. Res. 219, 698–706 (2012)

    Article  MathSciNet  Google Scholar 

  17. Lavor, C., Liberti, L., Mucherino, A.: The interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem with inexact distances. J. Global Optim. 56(3), 855–871 (2013)

    Article  MathSciNet  Google Scholar 

  18. Liberti, L., Lavor, C., Maculan, N.: A Branch-and-Prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15, 1–17 (2008)

    Article  MathSciNet  Google Scholar 

  19. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)

    Article  MathSciNet  Google Scholar 

  20. Liberti, L., Lavor, C., Mucherino, A.: The discretizable molecular distance geometry problem seems easier on proteins. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.) Distance Geometry: Theory, Methods and Applications, pp. 47–60. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-5128-0_3

    Chapter  MATH  Google Scholar 

  21. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods: from continuous to discrete. Int. Trans. Oper. Res. 18(1), 33–51 (2011)

    Article  MathSciNet  Google Scholar 

  22. Mucherino, A.: On the identification of discretization orders for distance geometry with intervals. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2013. LNCS, vol. 8085, pp. 231–238. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40020-9_24

    Chapter  MATH  Google Scholar 

  23. Mucherino, A.: A pseudo de Bruijn graph representation for discretization orders for distance geometry. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015. LNCS, vol. 9043, pp. 514–523. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16483-0_50

    Chapter  Google Scholar 

  24. Mucherino, A., Gonçalves, D.S.: An approach to dynamical distance geometry. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2017. LNCS, vol. 10589, pp. 821–829. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68445-1_94

    Chapter  Google Scholar 

  25. Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem. Optim. Lett. 6(8), 1671–1686 (2012)

    Article  MathSciNet  Google Scholar 

  26. Mucherino, A., Omer, J., Hoyet, L., Giordano, P.R., Multon, F.: An application-based characterization of dynamical distance geometry problems. Optim. Lett. (2018, to appear)

    Google Scholar 

  27. Saxe, J.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proceedings of 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)

    Google Scholar 

  28. Sit, A., Wu, Z.: Solving a generalized distance geometry problem for protein structure determination. Bull. Math. Biol. 73, 2809–2836 (2011)

    Article  MathSciNet  Google Scholar 

  29. Sulkowska, J.I., Morcos, F., Weigt, M., Hwa, T., Onuchic, J.N.: Genomics-aided structure prediction. Proc. Natl. Acad. Sci. (PNAS) U.S.A. 109(26), 10340–10345 (2012)

    Article  Google Scholar 

  30. Zhang, H., Hager, W.W.: A nonmonotone line search technique and its applications to unconstrained optimization. SIAM J. Optim. 14(4), 1043–1056 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

AM and JHL wish to thank the CNRS and MoST for financial support (PRC project “Rapid NMR Protein Structure Determination and Conformational Transition Sampling by a Novel Geometrical Approach”). AM and DSG wish to thank CAPES PRINT for financial support. DSG also thanks CNPq for financial support (Grant n. 421386/2016-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Hsin Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mucherino, A., Lin, JH., Gonçalves, D.S. (2019). A Coarse-Grained Representation for Discretizable Distance Geometry with Interval Data. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2019. Lecture Notes in Computer Science(), vol 11465. Springer, Cham. https://doi.org/10.1007/978-3-030-17938-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17938-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17937-3

  • Online ISBN: 978-3-030-17938-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics