Hierarchical LSTM: Modeling Temporal Dynamics and Taxonomy in Location-Based Mobile Check-Ins | SpringerLink
Skip to main content

Hierarchical LSTM: Modeling Temporal Dynamics and Taxonomy in Location-Based Mobile Check-Ins

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11440))

Included in the following conference series:

Abstract

“Is there any pattern in location-based, mobile check-in activities?” “If yes, is it possible to accurately predict the intention of a user’s next check-in, given his/her check-in history?” To answer these questions, we study and analyze probably the largest mobile check-in datasets, containing 20 millions check-in activities from 0.4 million users. We provide two observations: “work-n-relax” and “diurnal-n-nocturnal” showing that the intentions of users’ check-ins are strongly associated with time. Furthermore, the category of each check-in venue, which reveals users’ intentions, has structure and forms taxonomy. In this paper, we propose Hierarchical LSTM that takes both (a) check-in time and (b) taxonomy structure of venues from check-in sequences into consideration, providing accurate predictions on the category of a user’s next check-in location. Hierarchical LSTM also projects each category into an embedding space, providing a new representation with stronger semantic meanings. Experimental results are poised to demonstrate the effectiveness of the proposed Hierarchical LSTM: (a) Hierarchical LSTM improves Accuracy@5 by 4.22% on average, and (b) Hierarchical LSTM learns a better taxonomy embedding for clustering categories, which improves Silhouette Coefficient by 1.5X.

D.-C. Juan, W. Wei, Y.-T. Chen and J.-Y. Pan—Recently working at Google, Mountain View, CA, USA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jiepang Website (2018). https://jiepang.com/

  2. Bjerva, J., Bos, J., Van der Goot, R., Nissim, M.: The meaning factory: formal semantics for recognizing textual entailment and determining semantic similarity. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 642–646 (2014)

    Google Scholar 

  3. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  4. Lian, D., Xie, X.: Collaborative activity recognition via check-in history. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Location-Based Social Networks, pp. 45–48. ACM (2011)

    Google Scholar 

  5. Liu, Q., Wu, S., Wang, L., Tan, T.: Predicting the next location: a recurrent model with spatial and temporal contexts. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI 2016, pp. 194–200. AAAI Press (2016)

    Google Scholar 

  6. Noulas, A., Mascolo, C., Frias-Martinez, E.: Exploiting foursquare and cellular data to infer user activity in urban environments. In: 2013 IEEE 14th International Conference on Mobile Data Management (MDM), vol. 1, pp. 167–176. IEEE (2013)

    Google Scholar 

  7. Palangi, H., et al.: Deep sentence embedding using long short-term memory networks: analysis and application to information retrieval. IEEE/ACM Trans. Audio Speech Lang. Process. 24(4), 694–707 (2016)

    Article  Google Scholar 

  8. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Pianese, F., An, X., Kawsar, F., Ishizuka, H.: Discovering and predicting user routines by differential analysis of social network traces. In: 2013 IEEE 14th International Symposium and Workshops on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–9. IEEE (2013)

    Google Scholar 

  10. Socher, R., Lin, C.C., Manning, C., Ng, A.Y.: Parsing natural scenes and natural language with recursive neural networks. In: Proceedings of the 28th International Conference on Machine Learning (ICML-2011), pp. 129–136 (2011)

    Google Scholar 

  11. Yang, D., Zhang, D., Zheng, V.W., Yu, Z.: Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNs. IEEE Trans. Syst. Man Cybern.: Syst. 45(1), 129–142 (2015)

    Article  Google Scholar 

  12. Ye, J., Zhu, Z., Cheng, H.: What’s your next move: user activity prediction in location-based social networks. In: Proceedings of the 2013 SIAM International Conference on Data Mining, pp. 171–179. SIAM (2013)

    Google Scholar 

  13. Zhang, Y., et al.: Sequential click prediction for sponsored search with recurrent neural networks. In: AAAI 2014, pp. 1369–1375 (2014)

    Google Scholar 

  14. Zhao, S., King, I., Lyu, M.R.: A survey of point-of-interest recommendation in location-based social networks. CoRR abs/1607.00647 (2016). http://arxiv.org/abs/1607.00647

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Hao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, CH. et al. (2019). Hierarchical LSTM: Modeling Temporal Dynamics and Taxonomy in Location-Based Mobile Check-Ins. In: Yang, Q., Zhou, ZH., Gong, Z., Zhang, ML., Huang, SJ. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11440. Springer, Cham. https://doi.org/10.1007/978-3-030-16145-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16145-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16144-6

  • Online ISBN: 978-3-030-16145-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics