Abstract
The following article presents recent results of controllability problem of dynamical systems in infinite and finite-dimensional spaces. Roughly speaking, we describe selected controllability problems of fractional order systems, including approximate controllability and complete controllability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, R.P., de Andrade, B., Siracusa, G.: On fractional integro-differential equations with state-dependent delay. Comput. Math. Appl. 62(3), 1143–1149 (2011)
de Andrade, B., Dos Santos, J.P.C.: Existence of solution for a fractional neutral integro-differential equation with unbounded delay. Electron. J. Differ. Equ. 2012(90), 1–13 (2012)
Babiarz, A., Klamka, J., Niezabitowski, M.: Schauder’s fixed-point theorem in approximate controllability problems. Int. J. Appl. Math. Comput. Sci. 26(2), 263–275 (2016)
Bachelier, O., Dabkowski, P., Galkowski, K., Kummert, A.: Fractional and nd systems: a continuous case. Multidimension. Syst. Sig. Process. 23(3), 329–347 (2012)
Balasubramaniam, P., Tamilalagan, P.: Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using Mainardi’s function. Appl. Math. Comput. 256, 232–246 (2015)
Balasubramaniam, P., Vembarasan, V., Senthilkumar, T.: Approximate controllability of impulsive fractional integro-differential systems with nonlocal conditions in Hilbert space. Numer. Funct. Anal. Optim. 35(2), 177–197 (2014)
Debbouche, A., Nieto, J.J.: Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls. Appl. Math. Comput. 245, 74–85 (2014)
Debbouche, A., Torres, D.F.M.: Sobolev type fractional dynamic equations and optimal multi-integral controls with fractional nonlocal conditions. Fractional Calc. Appl. Anal. 18(1), 95–121 (2015)
Debbouche, A., Torres, D.F.: Approximate controllability of fractional delay dynamic inclusions with nonlocal control conditions. Appl. Math. Comput. 243, 161–175 (2014)
Fubini, G.: Sugli integrali multipli. Rendiconti Reale Accademia dei Lincei 5, 608–614 (1907)
Guechi, S., Debbouche, A., Torres, D.F.M.: Approximate controllability of impulsive non-local non-linear fractional dynamical systems and optimal control. Miskolc Math. Notes 19(1), 255–271 (2018)
Guendouzi, T., Farahi, S.: Approximate controllability of Sobolev-type fractional functional stochastic integro-differential systems. Boletín de la Sociedad Matemática Mexicana 21(2), 289–308 (2015)
Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore (2011)
Kaczorek, T., Sajewski, L.: The Realization Problem for Positive and Fractional Systems, vol. 1. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04834-5
Karthikeyan, S., Balachandran, K., Sathya, M.: Controllability of nonlinear stochastic systems with multiple time-varying delays in control. Int. J. Appl. Math. Comput. Sci. 25(2), 207–215 (2015)
Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier Science, Amsterdam (2006). No. 13
Klamka, J., Babiarz, A., Niezabitowski, M.: Banach fixed-point theorem in semilinear controllability problems-a survey. Bull. Pol. Acad. Sci. Tech. Sci. 64(1), 21–35 (2016)
Klamka, J.: Schauder’s fixed-point theorem in nonlinear controllability problems. Control Cybern. 29, 153–165 (2000)
Kumlin, P.: Functional Analysis Notes: A Note on Fixed Point Theory. Chalmers & GU, Gothenburg (2004)
Liang, J., Yang, H.: Controllability of fractional integro-differential evolution equations with nonlocal conditions. Appl. Math. Comput. 254, 20–29 (2015)
Liang, S., Mei, R.: Existence of mild solutions for fractional impulsive neutral evolution equations with nonlocal conditions. Adv. Differ. Equ. 2014(1), 101 (2014)
Liu, Z., Li, X.: On the controllability of impulsive fractional evolution inclusions in Banach spaces. J. Optim. Theory Appl. 156(1), 167–182 (2013)
Liu, Z., Li, X.: On the exact controllability of impulsive fractional semilinear functional differential inclusions. Asian J. Control 17(5), 1857–1865 (2015)
Mur, T., Henriquez, H.R.: Relative controllability of linear systems of fractional order with delay. Math. Control Relat. Fields 5(4), 845–858 (2015)
Nirmala, R.J., Balachandran, K.: The controllability of nonlinear implicit fractional delay dynamical systems. Int. J. Appl. Math. Comput. Sci. 27(3), 501–513 (2017)
Paszke, W., Dabkowski, P., Rogers, E., Gałkowski, K.: New results on strong practical stability and stabilization of discrete linear repetitive processes. Syst. Control Lett. 77, 22–29 (2015)
Schmeidel, E., Zbaszyniak, Z.: An application of Darbo’s fixed point theorem in the investigation of periodicity of solutions of difference equations. Comput. Math. Appl. 64(7), 2185–2191 (2012)
Wang, J., Fan, Z., Zhou, Y.: Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces. J. Optim. Theory Appl. 154(1), 292–302 (2012)
Wang, J., Zhou, Y.: Complete controllability of fractional evolution systems. Commun. Nonlinear Sci. Numer. Simul. 17(11), 4346–4355 (2012)
Xiaoli, D., Nieto, J.J.: Controllability and optimality of linear time-invariant neutral control systems with different fractional orders. Acta Math. Sci. 35(5), 1003–1013 (2015)
Yan, Z.: Existence results for fractional functional integrodifferential equations with nonlocal conditions in Banach spaces. Annales Polonici Mathematici 3, 285–299 (2010)
Yan, Z.: Controllability of fractional-order partial neutral functional integrodifferential inclusions with infinite delay. J. Franklin Inst. 348(8), 2156–2173 (2011)
Yan, Z.: Approximate controllability of partial neutral functional differential systems of fractional order with state-dependent delay. Int. J. Control 85(8), 1051–1062 (2012)
Yang, H., Ibrahim, E.: Approximate controllability of fractional nonlocal evolution equations with multiple delays. Adv. Differ. Equ. 2017(1), 272 (2017)
Zawiski, R.: On controllability and measures of noncompactness. In: AIP Conference Proceedings, vol. 1637, pp. 1241–1246. AIP (2014)
Zhang, X., Huang, X., Liu, Z.: The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay. Nonlinear Anal.: Hybrid Syst. 4(4), 775–781 (2010)
Zhang, X., Zhu, C., Yuan, C.: Approximate controllability of fractional impulsive evolution systems involving nonlocal initial conditions. Adv. Differ. Equ. 2015(1), 244 (2015)
Zhou, X.F., Wei, J., Hu, L.G.: Controllability of a fractional linear time-invariant neutral dynamical system. Appl. Math. Lett. 26(4), 418–424 (2013)
Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Elsevier Science, Amsterdam (2016)
Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59(3), 1063–1077 (2010)
Zhou, Y., Vijayakumar, V., Murugesu, R.: Controllability for fractional evolution inclusions without compactness. Evol. Equ. Control Theory 4(4), 507–524 (2015)
Acknowledgment
The research presented here was done by authors as parts of the projects funded by the National Science Centre in Poland granted according to decision UMO-2017/27/B/ST6/00145 (JK) and DEC-2015/19/D/ST7/03679 (AB).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Babiarz, A., Klamka, J. (2019). Selected Problems of Controllability of Semilinear Fractional Systems-A Survey. In: Nguyen, N., Gaol, F., Hong, TP., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2019. Lecture Notes in Computer Science(), vol 11431. Springer, Cham. https://doi.org/10.1007/978-3-030-14799-0_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-14799-0_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-14798-3
Online ISBN: 978-3-030-14799-0
eBook Packages: Computer ScienceComputer Science (R0)