Abstract
In the era of information overload, text clustering plays an important part in the analysis processing pipeline. Partitioning high-quality texts into unseen categories tremendously helps applications in information retrieval, databases, and business intelligence domains. Short texts from social media environment such as tweets, however, remain difficult to interpret due to the broad aspects of contexts. Traditional text similarity approaches only rely on the lexical matching while ignoring the semantic meaning of words. Recent advances in distributional semantic space have opened an alternative approach in utilizing high-quality word embeddings to aid the interpretation of text semantics. In this paper, we investigate the word mover’s distance metrics to automatically cluster short text using the word semantic information. We utilize the agglomerative strategy as the clustering method to efficiently group texts based on their similarity. The experiment indicates the word mover’s distance outperformed other standard metrics in the short text clustering task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)
Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7819, pp. 160–172. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37456-2_14
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(Aug), 2493–2537 (2011)
Dhingra, B., Zhou, Z., Fitzpatrick, D., Muehl, M., Cohen, W.W.: Tweet2vec: character-based distributed representations for social media. In: The 54th Annual Meeting of the Association for Computational Linguistics, p. 269 (2016)
Franciscus, N., Ren, X., Stantic, B.: Answering temporal analytic queries over big data based on precomputing architecture. In: Nguyen, N.T., Tojo, S., Nguyen, L.M., Trawiński, B. (eds.) ACIIDS 2017. LNCS (LNAI), vol. 10191, pp. 281–290. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54472-4_27
Hofmann, T.: Probabilistic latent semantic analysis. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 289–296. Morgan Kaufmann Publishers Inc. (1999)
Kenter, T., De Rijke, M.: Short text similarity with word embeddings. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1411–1420. ACM (2015)
Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: International Conference on Machine Learning, pp. 957–966 (2015)
Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196 (2014)
Liu, C.Y., Chen, M.S., Tseng, C.Y.: Incrests: towards real-time incremental short text summarization on comment streams from social network services. IEEE Trans. Knowl. Data Eng. 27(11), 2986–3000 (2015)
Mnih, A., Hinton, G.E.: A scalable hierarchical distributed language model. In: Advances in Neural Information Processing Systems, pp. 1081–1088 (2009)
Pele, O., Werman, M.: Fast and robust earth mover’s distances. In: ICCV, vol. 9, pp. 460–467 (2009)
Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)
Sidorov, G., Gelbukh, A., Gómez-Adorno, H., Pinto, D.: Soft similarity and soft cosine measure: similarity of features in vector space model. Computación y Sistemas 18(3), 491–504 (2014)
Turian, J., Ratinov, L., Bengio, Y.: Word representations: a simple and general method for semi-supervised learning. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 384–394. Association for Computational Linguistics (2010)
Vakulenko, S., Nixon, L., Lupu, M.: Character-based neural embeddings for tweet clustering. In: Proceedings of the Fifth International Workshop on Natural Language Processing for Social Media, pp. 36–44 (2017)
Vosoughi, S., Vijayaraghavan, P., Roy, D.: Tweet2vec: learning tweet embeddings using character-level CNN-LSTM encoder-decoder. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1041–1044. ACM (2016)
Vosoughi, S., Vijayaraghavan, P., Yuan, A., Roy, D.: Mapping twitter conversation landscapes. In: Proceedings of the Eleventh International Conference on Web and Social Media, ICWSM, 15–18 May 2017, pp. 684–687 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Franciscus, N., Ren, X., Wang, J., Stantic, B. (2019). Word Mover’s Distance for Agglomerative Short Text Clustering. In: Nguyen, N., Gaol, F., Hong, TP., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2019. Lecture Notes in Computer Science(), vol 11431. Springer, Cham. https://doi.org/10.1007/978-3-030-14799-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-14799-0_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-14798-3
Online ISBN: 978-3-030-14799-0
eBook Packages: Computer ScienceComputer Science (R0)