Abstract
Network robustness plays a critical role in the proper functioning of modern society. It is common practice to use spectral metrics, to quantify the robustness of networks. In this paper we compare eight different spectral metrics that quantify network robustness. Four of the metrics are derived from the adjacency matrix, the others follow from the Laplacian spectrum. We found that the metrics can give inconsistent indications, when comparing the robustness of different synthetic networks. Then, we calculate and compare the spectral metrics for a number of real-world networks, where inconsistencies still occur, but to a lesser extent. Finally, we indicate how the concept of the \(R^*\)-value, a weighted sum of robustness metrics, can be used to resolve the found inconsistencies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)
Almendral, J.A., Díaz-Guilera, A.: Dynamical and spectral properties of complex networks. New J. Phys. 9(6), 187 (2007)
Barahona, M., Pecora, L.M.: Synchronization in small-world systems. Phys. Rev. Lett. 89(5), 054101 (2002)
Baras, J.S., Hovareshti, P.: Efficient and robust communication topologies for distributed decision making in networked systems. In: Proceedings of the 48th IEEE Conference on Decision and Control, pp. 3751–3756 (2009)
Cvetković, D., Simić, S.: Graph spectra in computer science. Linear Algebra Appl. 434(6), 1545–1562 (2011)
Cvetković, D.M.: Applications of graph spectra: an introduction to the literature. Appl. Graph Spectra 13(21), 7–31 (2009)
Donetti, L., Hurtado, P.I., Munoz, M.A.: Entangled networks, synchronization, and optimal network topology. Phys. Rev. Lett. 95(18), 188701 (2005)
Ellens, W., Spieksma, F., Van Mieghem, P., Jamakovic, A., Kooij, R.E.: Effective graph resistance. Linear Algebra. Appl. 435(10), 2491–2506 (2011)
Ellens, W., Kooij, R.E.: Graph measures and network robustness. arXiv preprint arXiv:1311.5064 (2013)
Estrada, E.: Characterization of 3D molecular structure. Chem. Phys. Lett. 319(5), 713–718 (2000)
Estrada, E.: When local and global clustering of networks diverge. Linear Algebra Appl. 488, 249–263 (2016)
Estrada, E., Rodriguez-Velazquez, J.A.: Subgraph centrality in complex networks. Phys. Rev. E 71(5), 056103 (2005)
Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23(2), 298–305 (1973)
Hines, P., Balasubramaniam, K., Sanchez, E.C.: Cascading failures in power grids. IEEE Potentials 28(5), 24–30 (2009)
Jamakovic, A., Van Mieghem, P.: On the robustness of complex networks by using the algebraic connectivity. In: Das, A., Pung, H.K., Lee, F.B.S., Wong, L.W.C. (eds.) NETWORKING 2008. LNCS, vol. 4982, pp. 183–194. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79549-0_16
Jun, W., Barahona, M., Yue-Jin, T., Hong-Zhong, D.: Natural connectivity of complex networks. Chin. Phys. Lett. 27(7), 078902 (2010)
Karrer, B., Levina, E., Newman, M.E.J.: Robustness of community structure in networks. Phys. Rev. E 77(4), 046119 (2008)
Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The Internet topology zoo. IEEE J. Sel. Areas Commun. 29(9), 1765–1775 (2011)
Li, C., Wang, H., De Haan, W., Stam, C.J., Van Mieghem, P.: The correlation of metrics in complex networks with applications in functional brain networks. J. Stat. Mech. Theory Exp. 25(11), P11018 (2011)
Li, T., Fu, M., Xie, L., Zhang, J.F.: Distributed consensus with limited communication data rate. IEEE Trans. Autom. Control 56(2), 279–292 (2011)
Manzano, M., Sahneh, F.D., Scoglio, C.M., Calle, E., Marzo, J.L.: Robustness surfaces of complex networks. Nature Sci. Rep. 4(6133), 1–6 (2014)
Marcus, C.M., Westervelt, R.M.: Stability of analog neural networks with delay. Phys. Rev. A 39(1), 347 (1989)
Marzo, J.L., Calle, E., Gomez-Cosgaya, S., Rueda, D., Manosa, A.: On selecting the relevant metrics of network robustness. In: 10th International Workshop on Reliable Networks Design and Modeling (RNDM) (2018)
McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symbolic Comput. 60, 94–112 (2014)
Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D Nonlinear Phenom. 143(1), 1–20 (2000)
Trajanovski, S., Martín-Hernández, J., Winterbach, W., Van Mieghem, P.: Robustness envelopes of networks. J. Complex Netw. 1(1), 44–62 (2013)
Van Mieghem, P.: Graph Spectra for Complex Networks. Cambridge University Press, Cambridge (2010)
Van Mieghem, P., Omic, J., Kooij, R.E.: Virus spread in networks. IEEE/ACM Trans. Netw. 17(1), 1–14 (2009)
Wang, X., Koç, Y., Derrible, S., Ahmad, S.N., Pino, W.J., Kooij, R.E.: Multi-criteria robustness analysis of metro networks. Phys. A Stat. Mech. Appl. 474, 19–31 (2017)
Wang, X., Koç, Y., Kooij, R.E., Van Mieghem, P.: A network approach for power grid robustness against cascading failures. In: 7th International Workshop on Reliable Networks Design and Modeling (RNDM), pp. 208–214. IEEE (2015)
Wang, X., Pournaras, E., Kooij, R.E., Van Mieghem, P.: Improving robustness of complex networks via the effective graph resistance. Eur. Phys. J. B 87(9), 1–12 (2014)
Watanabe, T., Masuda, N.: Enhancing the spectral gap of networks by node removal. Phys. Rev. E 82(4), 046102 (2010)
Wu, J., Barahona, M., Tan, Y.J., Deng, H.Z.: Spectral measure of structural robustness in complex networks. IEEE Trans. Syst. Man Cybern.-Part A Syst. Hum. 41(6), 1244–1252 (2011)
Wu, Z.X., Holme, P.: Onion structure and network robustness. Phys. Rev. E 84(2), 026106 (2011)
Zanin, M., et al.: Combining complex networks and data mining: why and how. Phys. Rep. 635, 1–44 (2016)
Zeng, Y., Liang, Y.C.: Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Trans. Commun. 57(6), 1784–1793 (2009)
Acknowledgements
This research was supported in part by the Netherlands Organization for Scientific Research (NWO) with project number 439.16.107, the National Research Foundation (NRF), Prime Minister’s Office, Singapore, under its National Cybersecurity R & D Programme (Award No. NRF 2014NCR-NCR001-40) and administered by the National Cybersecurity R & D Directorate, by the Spanish Ministry of Science and Innovation project GIROS TEC2015-66412-R and by the Generalitat de Catalunya research support program SGR-1469.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Wang, X., Feng, L., Kooij, R.E., Marzo, J.L. (2019). Inconsistencies Among Spectral Robustness Metrics. In: Duong, T., Vo, NS., Phan, V. (eds) Quality, Reliability, Security and Robustness in Heterogeneous Systems. Qshine 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 272. Springer, Cham. https://doi.org/10.1007/978-3-030-14413-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-14413-5_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-14412-8
Online ISBN: 978-3-030-14413-5
eBook Packages: Computer ScienceComputer Science (R0)