Local Bisection for Conformal Refinement of Unstructured 4D Simplicial Meshes | SpringerLink
Skip to main content

Local Bisection for Conformal Refinement of Unstructured 4D Simplicial Meshes

  • Chapter
  • First Online:
27th International Meshing Roundtable (IMR 2018)

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 127))

Included in the following conference series:

Abstract

We present a conformal bisection procedure for local refinement of 4D unstructured simplicial meshes with bounded minimum shape quality. Specifically, we propose a recursive refine to conformity procedure in two stages, based on marking bisection edges on different priority levels and defining specific refinement templates. Two successive applications of the first stage ensure that any 4D unstructured mesh can be conformingly refined. In the second stage, the successive refinements lead to a cycle in the number of generated similarity classes and thus, we can ensure a bound over the minimum shape quality. In the examples, we check that after successive refinement the mesh quality does not degenerate. Moreover, we refine a 4D unstructured mesh and a space-time mesh (3D + 1D) representation of a moving object.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Freudenthal, Simplizialzerlegungen von beschrankter flachheit. Ann. Math. 43(3), 580–582 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Kuhn, Some combinatorial lemmas in topology. IBM J. Res. Dev. 4(5), 518–524 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Bey, Simplicial grid refinement: on Freudenthal’s algorithm and the optimal number of congruence classes. Numer. Math. 85(1), 1–29 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Bank, A. Sherman, A. Weiser, Some refinement algorithms and data structures for regular local mesh refinement. Sci. Comput. 1, 3–17 (1983)

    Google Scholar 

  5. J. Bey, Tetrahedral grid refinement. Computing 55(4), 355–378 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Liu, B. Joe, Quality local refinement of tetrahedral meshes based on 8-subtetrahedron subdivision. Math. Comput. 65(215), 1183–1200 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Zhang, Successive subdivisions of tetrahedra and multigrid methods on tetrahedral meshes. Houston J. Math. 21(3), 541–556 (1995)

    MathSciNet  MATH  Google Scholar 

  8. M.C. Rivara, Algorithms for refining triangular grids suitable for adaptive and multigrid techniques. Int. J. Numer. Methods Eng. 20(4), 745–756 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Bänsch, Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Eng. 3(3), 181–191 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Liu, B. Joe, Quality local refinement of tetrahedral meshes based on bisection. SIAM J. Sci. Comput. 16(6), 1269–1291 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Maubach, Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Comput. 16(1), 210–227 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Traxler, An algorithm for adaptive mesh refinement in n dimensions. Computing 59(2), 115–137 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Arnold, A. Mukherjee, L. Pouly, Locally adapted tetrahedral meshes using bisection. SIAM J. Sci. Comput. 22(2), 431–448 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Plaza, M.C. Rivara, Mesh refinement based on the 8-tetrahedra longest-edge partition, in IMR, 2003, pp. 67–78

    Google Scholar 

  15. M. Neumüller, O. Steinbach, A flexible space-time discontinuous Galerkin method for parabolic initial boundary value problems. Berichte aus dem Institut für Numerische Mathematik 2, 1–33 (2011)

    Google Scholar 

  16. P.M. Knupp, Algebraic mesh quality metrics. SIAM J. Numer. Anal. 23(1), 193–218 (2001)

    MathSciNet  MATH  Google Scholar 

  17. C. Barber, D. Dobkin, H. Huhdanpaa, The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 715546. This work has also received funding from the Generalitat de Catalunya under grant number 2017 SGR 1731. The work of X. Roca has been partially supported by the Spanish Ministerio de Economía y Competitividad under the personal grant agreement RYC-2015-01633.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Gargallo-Peiró .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Belda-Ferrín, G., Gargallo-Peiró, A., Roca, X. (2019). Local Bisection for Conformal Refinement of Unstructured 4D Simplicial Meshes. In: Roca, X., Loseille, A. (eds) 27th International Meshing Roundtable. IMR 2018. Lecture Notes in Computational Science and Engineering, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-13992-6_13

Download citation

Publish with us

Policies and ethics