Abstract
To perform an analytical and numerical investigation of optical bullets in a focusing bulk waveguide with quadratic nonlinearity we use the well-known quasi-optical approach. We give an approximate soliton solution representing a two-component light bullet. To investigate numerically the regimes of the formation and propagation of two-component optical bullets we construct a conservative difference scheme. To realize the multi-dimensional nonlinear difference scheme we propose a multi-step effective iterative solver. This method allows us to carry out an accurate and efficient modeling of the considered processes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kivshar, Y.S., Agrawal, G.: Optical Solitons: From Fibers to Photonic Crystals. Academic press, Cambridge (2003)
Karamzin, Y.N., Sukhorukov, A.P.: Nonlinear interaction of diffracting light beams in a medium with quadratic nonlinearity; focusing of beams and limiting the efficiency of optical frequency converters. Eksp Zh. Teor. Fiz. 20, 734 (1974)
Kanashov, A.A., Rubenchik, A.M.: On diffraction and dispersion effect on three wave interaction. Phys. D 4, 122 (1981)
Malomed, B.A., Drummond, P., He, H., et al.: Spatiotemporal solitons in multidimensional optical media with a quadratic nonlinearity. Phys. Rev. E 56, 4725 (1997)
Skryabin, D.V., Firth, W.J.: Generation and stability of optical bullets in quadratic nonlinear media. Opt. Commun. 148, 79 (1998)
McLeod, R., Wagner, K., Blair, S.: (3+1)-dimensional optical soliton dragging logic. Phys. Rev. A 52, 3254 (1995)
McDonald, G.D., et al.: Bright solitonic matter-wave interferometer. Phys. Rev. Lett. 113, 013002 (2014)
Sazonov, S.V., Mamaikin, M.S., Komissarova, M.V., Zakharova, I.G.: Planar light bullets under conditions of second-harmonic generation. Phys. Rev. E 96, 022208 (2017)
Sazonov, S.V., Mamaikin, M.S., Zakharova, I.G., Komissarova, M.V.: Planar spatiotemporal solitons in a quadratic nonlinear medium. Phys. Wave Phenom. 25, 83 (2017)
Samarskii, A.A.: The Theory of Difference Schemes Marcel. Dekker Inc., New York (2001)
Karamzin, Y.N.: Difference schemes for calculating the three-frequency interactions of electromagnetic waves in a non-linear medium with quadratic polarization. USSR Comput. Math. Math. Phys. 14(4), 236–241 (1974)
Ciegis, R., Mirinavicius, A., Radziunas, M.: Comparison of split step solvers for multidimensional Schrödinger problems. Comput. Methods Appl. Math. 13(1), 237–250 (2013)
Gaspar, F.J., Rodrigo, C., Ciegis, R., Mirinavicius, A.: Comparison of solvers for 2D Schrodinger problems. Int. J. Numer. Anal. Model. 11(1), 131–147 (2014)
Trofimov, V.A., Loginova, M.M.: Difference scheme for the problem of femtosecond pulse interaction with semiconductor in the case of nonlinear electron mobility. J. Comput. Math. Math. Phys. 45(12), 2185–2196 (2005)
Shizgal, B.: Spectral Methods in Chemistry and Physics. SC. Springer, Dordrecht (2015). https://doi.org/10.1007/978-94-017-9454-1
Drummond, P.D.: Central partial difference propagation algorithms. Comput. Phys. Commun. 29, 211 (1983)
Agrawal, G.: Nonlinear Fiber Optics, 5th edn. Academic press, Cambridge (2012)
Trofimov, V.A., Loginova, M.M., Egorenkov, V.A.: Influence of external electric field on laser- induced wave process occurring in semiconductor under the femtosecond pulse acting. In: Proceedings of SPIE, vol. 9127, p. 912709 (2014)
Trofimov, V.A., Loginova, M.M., Egorenkov, V.A.: New two-step iteration process for solving the semiconductor plasma generation problem with arbitrary BC in 2D case. WIT Trans. Model. Simul. 59 (2015). https://doi.org/10.2495/CMEM150081
Antoine, X., Besse, C.: Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrodinger equation. J. Comput. Phys. 188, 157–175 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Zakharova, I.G., Kalinovich, A.A., Komissarova, M.V., Sazonov, S.V. (2019). Multi-step Iterative Algorithm for Mathematical Modeling of Light Bullets in Anisotropic Media. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_79
Download citation
DOI: https://doi.org/10.1007/978-3-030-11539-5_79
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11538-8
Online ISBN: 978-3-030-11539-5
eBook Packages: Computer ScienceComputer Science (R0)