Multi-step Iterative Algorithm for Mathematical Modeling of Light Bullets in Anisotropic Media | SpringerLink
Skip to main content

Multi-step Iterative Algorithm for Mathematical Modeling of Light Bullets in Anisotropic Media

  • Conference paper
  • First Online:
Finite Difference Methods. Theory and Applications (FDM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11386))

Included in the following conference series:

  • 1383 Accesses

Abstract

To perform an analytical and numerical investigation of optical bullets in a focusing bulk waveguide with quadratic nonlinearity we use the well-known quasi-optical approach. We give an approximate soliton solution representing a two-component light bullet. To investigate numerically the regimes of the formation and propagation of two-component optical bullets we construct a conservative difference scheme. To realize the multi-dimensional nonlinear difference scheme we propose a multi-step effective iterative solver. This method allows us to carry out an accurate and efficient modeling of the considered processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kivshar, Y.S., Agrawal, G.: Optical Solitons: From Fibers to Photonic Crystals. Academic press, Cambridge (2003)

    Google Scholar 

  2. Karamzin, Y.N., Sukhorukov, A.P.: Nonlinear interaction of diffracting light beams in a medium with quadratic nonlinearity; focusing of beams and limiting the efficiency of optical frequency converters. Eksp Zh. Teor. Fiz. 20, 734 (1974)

    Google Scholar 

  3. Kanashov, A.A., Rubenchik, A.M.: On diffraction and dispersion effect on three wave interaction. Phys. D 4, 122 (1981)

    Google Scholar 

  4. Malomed, B.A., Drummond, P., He, H., et al.: Spatiotemporal solitons in multidimensional optical media with a quadratic nonlinearity. Phys. Rev. E 56, 4725 (1997)

    Google Scholar 

  5. Skryabin, D.V., Firth, W.J.: Generation and stability of optical bullets in quadratic nonlinear media. Opt. Commun. 148, 79 (1998)

    Google Scholar 

  6. McLeod, R., Wagner, K., Blair, S.: (3+1)-dimensional optical soliton dragging logic. Phys. Rev. A 52, 3254 (1995)

    Google Scholar 

  7. McDonald, G.D., et al.: Bright solitonic matter-wave interferometer. Phys. Rev. Lett. 113, 013002 (2014)

    Google Scholar 

  8. Sazonov, S.V., Mamaikin, M.S., Komissarova, M.V., Zakharova, I.G.: Planar light bullets under conditions of second-harmonic generation. Phys. Rev. E 96, 022208 (2017)

    Google Scholar 

  9. Sazonov, S.V., Mamaikin, M.S., Zakharova, I.G., Komissarova, M.V.: Planar spatiotemporal solitons in a quadratic nonlinear medium. Phys. Wave Phenom. 25, 83 (2017)

    Google Scholar 

  10. Samarskii, A.A.: The Theory of Difference Schemes Marcel. Dekker Inc., New York (2001)

    Google Scholar 

  11. Karamzin, Y.N.: Difference schemes for calculating the three-frequency interactions of electromagnetic waves in a non-linear medium with quadratic polarization. USSR Comput. Math. Math. Phys. 14(4), 236–241 (1974)

    Google Scholar 

  12. Ciegis, R., Mirinavicius, A., Radziunas, M.: Comparison of split step solvers for multidimensional Schrödinger problems. Comput. Methods Appl. Math. 13(1), 237–250 (2013)

    Google Scholar 

  13. Gaspar, F.J., Rodrigo, C., Ciegis, R., Mirinavicius, A.: Comparison of solvers for 2D Schrodinger problems. Int. J. Numer. Anal. Model. 11(1), 131–147 (2014)

    Google Scholar 

  14. Trofimov, V.A., Loginova, M.M.: Difference scheme for the problem of femtosecond pulse interaction with semiconductor in the case of nonlinear electron mobility. J. Comput. Math. Math. Phys. 45(12), 2185–2196 (2005)

    Google Scholar 

  15. Shizgal, B.: Spectral Methods in Chemistry and Physics. SC. Springer, Dordrecht (2015). https://doi.org/10.1007/978-94-017-9454-1

    Google Scholar 

  16. Drummond, P.D.: Central partial difference propagation algorithms. Comput. Phys. Commun. 29, 211 (1983)

    Google Scholar 

  17. Agrawal, G.: Nonlinear Fiber Optics, 5th edn. Academic press, Cambridge (2012)

    Google Scholar 

  18. Trofimov, V.A., Loginova, M.M., Egorenkov, V.A.: Influence of external electric field on laser- induced wave process occurring in semiconductor under the femtosecond pulse acting. In: Proceedings of SPIE, vol. 9127, p. 912709 (2014)

    Google Scholar 

  19. Trofimov, V.A., Loginova, M.M., Egorenkov, V.A.: New two-step iteration process for solving the semiconductor plasma generation problem with arbitrary BC in 2D case. WIT Trans. Model. Simul. 59 (2015). https://doi.org/10.2495/CMEM150081

  20. Antoine, X., Besse, C.: Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrodinger equation. J. Comput. Phys. 188, 157–175 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina G. Zakharova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zakharova, I.G., Kalinovich, A.A., Komissarova, M.V., Sazonov, S.V. (2019). Multi-step Iterative Algorithm for Mathematical Modeling of Light Bullets in Anisotropic Media. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11539-5_79

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11538-8

  • Online ISBN: 978-3-030-11539-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics