Generalized Multiscale Finite Element Method for Poroelasticity Problems in Heterogeneous Media | SpringerLink
Skip to main content

Generalized Multiscale Finite Element Method for Poroelasticity Problems in Heterogeneous Media

  • Conference paper
  • First Online:
Finite Difference Methods. Theory and Applications (FDM 2018)

Abstract

In this work, we consider the poroelasticity problems in heterogeneous porous media. Mathematical model contains coupled system of the equations for pressure and displacements. For the numerical solution, we present a Generalized Multiscale Finite Element Method (GMsFEM). This method solves a problem on a coarse grid by construction of the local multiscale basic functions. The procedure begins with construction of multiscale bases for both displacement and pressure in each coarse block. Using a snapshot space and local spectral problems, we construct a basis of reduced dimension. Finally, after multiplying by a multiscale partitions of unity, the multiscale basis is constructed in the online phase and the coarse grid problem then can be solved for arbitrary forcing and boundary conditions. We compare the solutions by choosing different numbers of multiscale basis functions. The results show that GMsFEM can provide good accuracy for two and three dimensional problems in heterogeneous domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Meirmanov, A.: Mathematical Models for Poroelastic Flows. Atlantis Press, Paris (2014). https://doi.org/10.2991/978-94-6239-015-7

    Book  MATH  Google Scholar 

  2. Brown, D.L., Vasilyeva, M.V.: A generalized multiscale finite element method for poroelasticity problems II: nonlinear coupling. J. Comput. Appl. Math. 294, 372–388 (2016)

    Article  MathSciNet  Google Scholar 

  3. Brown, D.L., Vasilyeva, M.V.: A generalized multiscale finite element method for poroelasticity problems I: linear problems. J. Comput. Appl. Math. 297, 132–146 (2016)

    Article  MathSciNet  Google Scholar 

  4. Akkutlu, I.Y., Efendiev, Y., Vasilyeva, M., Wang, Y.: Multiscale model reduction for shale gas transport in a coupled discrete fracture and dual-continuum porous media. J. Nat. Gas Sci. Eng. 48, 65–76 (2017)

    Article  Google Scholar 

  5. Kolesov, A.E., Vabishchevich, P.N., Vasilyeva, M.V.: Splitting schemes for poroelasticity and thermoelasticity problems. Comput. Math. Appl. 67, 2185–2198 (2014)

    Article  MathSciNet  Google Scholar 

  6. Sivtsev, P.V., Vabishchevich, P.N., Vasilyeva, M.V.: Numerical simulation of thermoelasticity problems on high performance computing systems. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) FDM 2014. LNCS, vol. 9045, pp. 364–370. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20239-6_40

    Chapter  Google Scholar 

  7. Armero, F.: Formulation and finite element implementation of a multiplicative model of coupled poro-plasticity at finite strains under fully saturated conditions. Comput. Methods Appl. Mech. Eng. 171(3–4), 205–241 (1999)

    Article  MathSciNet  Google Scholar 

  8. Efendiev, Y., Hou, T.Y.: Multiscale Finite Element Methods: Theory and Applications. STAMS, vol. 4. Springer Science & Business Media, New York (2009)

    MATH  Google Scholar 

  9. Efendiev, Y., Galvis, J., Hou, T.Y.: Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys. 251, 116–135 (2013)

    Article  MathSciNet  Google Scholar 

  10. Terzaghi, K.: Theory of consolidation. In: Theoretical Soil Mechanics, pp. 265–296 (1943)

    Google Scholar 

  11. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  Google Scholar 

  12. Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  13. Salençon, J.: Handbook of Continuum Mechanics: General Concepts thermoelasticity. Springer Science & Business Media, Heidelberg (2001). https://doi.org/10.1007/978-3-642-56542-7

    Book  MATH  Google Scholar 

Download references

Acknowledgments

Work is supported by the grant of the Russian Scientific Found (N 17-71-20055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tyrylgin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tyrylgin, A., Vasilyeva, M., Brown, D. (2019). Generalized Multiscale Finite Element Method for Poroelasticity Problems in Heterogeneous Media. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11539-5_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11538-8

  • Online ISBN: 978-3-030-11539-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics