Abstract
The main purpose of this work is the analysis of some stochastic algorithms to determine values of harmonic functions at points of a bounded domain of Euclidean space. To solve the Dirichlet problem we use a Random Walk on Spheres algorithm. The Neumann problem is solved by means of integral equations of potential theory.
We compare Monte Carlo and quasi-Monte Carlo versions of these algorithms numerically. The desired value of the harmonic function is represented as the sum of a series of integrals on hypercubes whose dimension grows. Therefore, the asymptotic formulas for discrepancy cannot be used for estimation of the error of quasi-Monte Carlo algorithm. New results are obtained about the influence of the smoothness of the domain boundary on the accuracy of calculations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Sabelfeld, K.K.: Monte Carlo Methods in Boundary Value Problems. Springer, Heidelberg (1991)
Ermakov, S.M., Nekrutkin, V.V., Sipin, A.S.: Random Processes for Classical Equations of Mathematical Physics. Kluwer Academic Publishers, Dordrecht (1989)
Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63. Society for Industrial and Applied Mathematics, Philadelphia (1992)
Acknowledgments
Supported by the Russian Foundation for Basic Research, projects No. 17-01-00267, 18-47-350002.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Sipin, A.S., Zeifman, A.I. (2019). Numerical Experiments for Some Markov Models for Solving Boundary Value Problems. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_57
Download citation
DOI: https://doi.org/10.1007/978-3-030-11539-5_57
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11538-8
Online ISBN: 978-3-030-11539-5
eBook Packages: Computer ScienceComputer Science (R0)