Abstract
The stationary reaction-diffusion-advection problems, modeling the processes of the transport and chemical transformation of active and passive impurities in the surface layer of the atmosphere, to which the asymptotic methods are applicable (to the problems), are considered. We study the multidimensional asymptotically Lyapunov-stable solutions of the boundary layer type and the contrast structures by constructing the formal asymptotic approximations of an arbitrary-order accuracy based on the boundary-function method. To justify the constructed asymptotics, we use an asymptotic method of differential inequalities. The results of the study are illustrated by the example of the two-dimensional boundary value problem with a cubic nonlinearity. They can be used to create a numerical algorithm that uses asymptotic analysis to construct spatially inhomogeneous mashes when describing the internal layer of contrast structure, and also for the purposes of constructing the test examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Elansky, N.F., Ponomarev, N.A., Verevkin, Y.M.: Air quality and pollutant emissions in the Moscow megacity in 2005–2014. Atmos. Environ. 175, 54–64 (2018)
Nefedov, N.N., Sakamoto, K.: Multi-dimensional stationary internal layers for spatially inhomogeneous reaction-diffusion equations with balanced nonlinearity. Hiroshima Math. J. 33(3), 391–432 (2003)
Davydova, M.A., Nefedov, N.N.: Existance and stability of contrast structures in multidimensional singularly perturbed reaction-diffusion-advection problems. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) Numerical Analysis and Its Applications, vol. 10187, pp. 277–285. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57099-0_29
Davydova, M.A.: Existance and stability of solutions with boundary layers in multidimensional singularly perturbed reaction-diffusion-advection problems. Math. Notes 98(6), 909–919 (2015)
Nefedov, N.N., Davydova, M.A.: Contrast structures in singularly perturbed quasilinear reaction-diffusion-advection equations. Differ. Equ. 49(6), 688–706 (2013)
Nefedov, N.: Comparison principle for reaction-diffusion-advection problems with boundary and internal layers. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) NAA 2012. LNCS, vol. 8236, pp. 62–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41515-9_6
Vasil’yeva, A.B., Butuzov, V.F.: Asimptoticheskiye metody v teorii singulyarnykh vozmushcheniy. Vyssh. shkola, Moscow (1990)
Davydova, M.A., Zakharova, S.A., Levashova, N.T.: On the model problem for the reaction-diffusion-advection equation. Comput. Math. Math. Phys. 57(9), 1528–1539 (2017)
Fife, P.C., Hsiao, L.: The generation and propagation of internal layers. Nonlinear Anal. Theory Methods Appl. 12(1), 19–41 (1998)
Nefedov, N.N., Davydova, M.A.: Contrast structures in multidimensional singularly perturbed reaction-diffusion-advection equations. Differ. Equ. 48(5), 745–755 (2012)
Romanovskiy, Y.U.M., Stepanova, N.V., Chernavskiy, D.S.: Matematicheskaya biofizika. Nauka, Moscow (1984)
Volkov, V., Nefedov, N.: Asymptotic-numerical investigation of generation and motion of fronts in phase transition models. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) NAA 2012. LNCS, vol. 8236, pp. 524–531. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41515-9_60
Acknowledgements
This work was supported by the Russian Science Foundation (project no. 18-11-00042).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Davydova, M.A., Nefedov, N.N., Zakharova, S.A. (2019). Asymptotically Lyapunov-Stable Solutions with Boundary and Internal Layers in the Stationary Reaction-Diffusion-Advection Problems with a Small Transfer. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-11539-5_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11538-8
Online ISBN: 978-3-030-11539-5
eBook Packages: Computer ScienceComputer Science (R0)