Asymptotically Lyapunov-Stable Solutions with Boundary and Internal Layers in the Stationary Reaction-Diffusion-Advection Problems with a Small Transfer | SpringerLink
Skip to main content

Asymptotically Lyapunov-Stable Solutions with Boundary and Internal Layers in the Stationary Reaction-Diffusion-Advection Problems with a Small Transfer

  • Conference paper
  • First Online:
Finite Difference Methods. Theory and Applications (FDM 2018)

Abstract

The stationary reaction-diffusion-advection problems, modeling the processes of the transport and chemical transformation of active and passive impurities in the surface layer of the atmosphere, to which the asymptotic methods are applicable (to the problems), are considered. We study the multidimensional asymptotically Lyapunov-stable solutions of the boundary layer type and the contrast structures by constructing the formal asymptotic approximations of an arbitrary-order accuracy based on the boundary-function method. To justify the constructed asymptotics, we use an asymptotic method of differential inequalities. The results of the study are illustrated by the example of the two-dimensional boundary value problem with a cubic nonlinearity. They can be used to create a numerical algorithm that uses asymptotic analysis to construct spatially inhomogeneous mashes when describing the internal layer of contrast structure, and also for the purposes of constructing the test examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Elansky, N.F., Ponomarev, N.A., Verevkin, Y.M.: Air quality and pollutant emissions in the Moscow megacity in 2005–2014. Atmos. Environ. 175, 54–64 (2018)

    Article  Google Scholar 

  2. Nefedov, N.N., Sakamoto, K.: Multi-dimensional stationary internal layers for spatially inhomogeneous reaction-diffusion equations with balanced nonlinearity. Hiroshima Math. J. 33(3), 391–432 (2003)

    Article  MathSciNet  Google Scholar 

  3. Davydova, M.A., Nefedov, N.N.: Existance and stability of contrast structures in multidimensional singularly perturbed reaction-diffusion-advection problems. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) Numerical Analysis and Its Applications, vol. 10187, pp. 277–285. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57099-0_29

    Chapter  MATH  Google Scholar 

  4. Davydova, M.A.: Existance and stability of solutions with boundary layers in multidimensional singularly perturbed reaction-diffusion-advection problems. Math. Notes 98(6), 909–919 (2015)

    Article  MathSciNet  Google Scholar 

  5. Nefedov, N.N., Davydova, M.A.: Contrast structures in singularly perturbed quasilinear reaction-diffusion-advection equations. Differ. Equ. 49(6), 688–706 (2013)

    Article  MathSciNet  Google Scholar 

  6. Nefedov, N.: Comparison principle for reaction-diffusion-advection problems with boundary and internal layers. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) NAA 2012. LNCS, vol. 8236, pp. 62–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41515-9_6

    Chapter  MATH  Google Scholar 

  7. Vasil’yeva, A.B., Butuzov, V.F.: Asimptoticheskiye metody v teorii singulyarnykh vozmushcheniy. Vyssh. shkola, Moscow (1990)

    Google Scholar 

  8. Davydova, M.A., Zakharova, S.A., Levashova, N.T.: On the model problem for the reaction-diffusion-advection equation. Comput. Math. Math. Phys. 57(9), 1528–1539 (2017)

    Article  MathSciNet  Google Scholar 

  9. Fife, P.C., Hsiao, L.: The generation and propagation of internal layers. Nonlinear Anal. Theory Methods Appl. 12(1), 19–41 (1998)

    Article  MathSciNet  Google Scholar 

  10. Nefedov, N.N., Davydova, M.A.: Contrast structures in multidimensional singularly perturbed reaction-diffusion-advection equations. Differ. Equ. 48(5), 745–755 (2012)

    Article  MathSciNet  Google Scholar 

  11. Romanovskiy, Y.U.M., Stepanova, N.V., Chernavskiy, D.S.: Matematicheskaya biofizika. Nauka, Moscow (1984)

    Google Scholar 

  12. Volkov, V., Nefedov, N.: Asymptotic-numerical investigation of generation and motion of fronts in phase transition models. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) NAA 2012. LNCS, vol. 8236, pp. 524–531. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41515-9_60

    Chapter  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (project no. 18-11-00042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Davydova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Davydova, M.A., Nefedov, N.N., Zakharova, S.A. (2019). Asymptotically Lyapunov-Stable Solutions with Boundary and Internal Layers in the Stationary Reaction-Diffusion-Advection Problems with a Small Transfer. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11539-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11538-8

  • Online ISBN: 978-3-030-11539-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics