Abstract
In this work, we consider the elasticity problem in fractured media. For the efficient numerical solution, we present a Generalized Multiscale Finite Element Method (GMsFEM). GMsFEM is used for the construction of a coarse grid approximation of the problem by solution of the local spectral problems. We consider two types of the multiscale basis functions: (1) CG-GMsFEM with continuous multiscale basis functions and (2) DG-GMsFEM with discontinuous multiscale basis functions. The result of the numerical solution for the two-dimensional model problem is presented to show the performance of the presented multiscale method for fractured media. We compute error between the multiscale solution with the fine-scale solutions by choosing different numbers of multiscale basis functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Grechka, V., Kachanov, M.: Effective elasticity of fractured rocks: a snapshot of the work in progress. Geophysics 71(6), W45–W58 (2006)
Nikolaevskij, V.N.: Mechanics of Porous and Fractured Media. World Scientific, Singapore (2014)
Coates, R.T., Schoenberg, M.: Finite-difference modeling of faults and fractures. Geophysics 60, 1514–1526 (1995)
Schoenberg, M., Sayers, C.M.: Seismic anisotropy of fractured rock. Geophysics 60, 204–211 (1995)
Chung, E.T., Efendiev, Y., Fu, S.: Generalized multiscale finite element method for elasticity equations. GEM-Int. J. Geomath. 5, 225–254 (2014)
Chung, E.T., Efendiev, Y., Gibson, R.L., Vasilyeva, M.: A generalized multiscale finite element method for elastic wave propagation in fractured media. GEM-Int. J. Geomath. 7, 163–182 (2016)
Efendiev, Y., Galvis, J., Hou, T.Y.: Generalized multiscale finite element methods (GMsFEM). J. Comput. Phy. 251, 116–135 (2013)
Hou, T., Efendiev, Y.: Multiscale Finite Element Methods. Theory and Applications. Springer, New York (2009). https://doi.org/10.1007/978-0-387-09496-0
Efendiev, Y., Galvis, J., Lazarov, R., Moon, M., Sarkis, M.: Generalized multiscale finite element method Symmetric interior penalty coupling. J. Comput. Phys. 255, 1–15 (2013)
Chung, E.T., Efendiev, Y., Leung, W.T.: An online generalized multiscale discontinuous Galerkin method (GMsDGM) for flows in heterogeneous media. Commun. Comput. Phys. 21, 401–422 (2017)
Chung, E.T., Efendiev, Y., Vasilyeva, M., Wang, Y.: A multiscale discontinuous Galerkin method in perforated domains. In: Proceedings of the Institute of Mathematics and Mechanics (2016)
Riviere, B., et al.: Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity. Numer. Math. 95, 347–376 (2003)
Chung, E.T., et al.: Online adaptive local multiscale model reduction for heterogeneous problems in perforated domains. Appl. Anal. 96, 2002–2031 (2017)
Oleinik, O.A., Shamaev, A.S., Yosifian, G.A.: Mathematical Problems in Elasticity and Homogenization. Elsevier, New York City (2008)
Acknowledgments
This work is supported by the grant of the Russian Scientific Found (N 17-71-20055).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Alekseev, V., Tyrylgin, A., Vasilyeva, M. (2019). Generalized Multiscale Finite Element Method for Elasticity Problem in Fractured Media. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-11539-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11538-8
Online ISBN: 978-3-030-11539-5
eBook Packages: Computer ScienceComputer Science (R0)