Generalized Multiscale Finite Element Method for Elasticity Problem in Fractured Media | SpringerLink
Skip to main content

Generalized Multiscale Finite Element Method for Elasticity Problem in Fractured Media

  • Conference paper
  • First Online:
Finite Difference Methods. Theory and Applications (FDM 2018)

Abstract

In this work, we consider the elasticity problem in fractured media. For the efficient numerical solution, we present a Generalized Multiscale Finite Element Method (GMsFEM). GMsFEM is used for the construction of a coarse grid approximation of the problem by solution of the local spectral problems. We consider two types of the multiscale basis functions: (1) CG-GMsFEM with continuous multiscale basis functions and (2) DG-GMsFEM with discontinuous multiscale basis functions. The result of the numerical solution for the two-dimensional model problem is presented to show the performance of the presented multiscale method for fractured media. We compute error between the multiscale solution with the fine-scale solutions by choosing different numbers of multiscale basis functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grechka, V., Kachanov, M.: Effective elasticity of fractured rocks: a snapshot of the work in progress. Geophysics 71(6), W45–W58 (2006)

    Article  Google Scholar 

  2. Nikolaevskij, V.N.: Mechanics of Porous and Fractured Media. World Scientific, Singapore (2014)

    Google Scholar 

  3. Coates, R.T., Schoenberg, M.: Finite-difference modeling of faults and fractures. Geophysics 60, 1514–1526 (1995)

    Article  Google Scholar 

  4. Schoenberg, M., Sayers, C.M.: Seismic anisotropy of fractured rock. Geophysics 60, 204–211 (1995)

    Article  Google Scholar 

  5. Chung, E.T., Efendiev, Y., Fu, S.: Generalized multiscale finite element method for elasticity equations. GEM-Int. J. Geomath. 5, 225–254 (2014)

    Article  MathSciNet  Google Scholar 

  6. Chung, E.T., Efendiev, Y., Gibson, R.L., Vasilyeva, M.: A generalized multiscale finite element method for elastic wave propagation in fractured media. GEM-Int. J. Geomath. 7, 163–182 (2016)

    Article  MathSciNet  Google Scholar 

  7. Efendiev, Y., Galvis, J., Hou, T.Y.: Generalized multiscale finite element methods (GMsFEM). J. Comput. Phy. 251, 116–135 (2013)

    Article  MathSciNet  Google Scholar 

  8. Hou, T., Efendiev, Y.: Multiscale Finite Element Methods. Theory and Applications. Springer, New York (2009). https://doi.org/10.1007/978-0-387-09496-0

    Book  MATH  Google Scholar 

  9. Efendiev, Y., Galvis, J., Lazarov, R., Moon, M., Sarkis, M.: Generalized multiscale finite element method Symmetric interior penalty coupling. J. Comput. Phys. 255, 1–15 (2013)

    Article  MathSciNet  Google Scholar 

  10. Chung, E.T., Efendiev, Y., Leung, W.T.: An online generalized multiscale discontinuous Galerkin method (GMsDGM) for flows in heterogeneous media. Commun. Comput. Phys. 21, 401–422 (2017)

    Article  MathSciNet  Google Scholar 

  11. Chung, E.T., Efendiev, Y., Vasilyeva, M., Wang, Y.: A multiscale discontinuous Galerkin method in perforated domains. In: Proceedings of the Institute of Mathematics and Mechanics (2016)

    Google Scholar 

  12. Riviere, B., et al.: Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity. Numer. Math. 95, 347–376 (2003)

    Article  MathSciNet  Google Scholar 

  13. Chung, E.T., et al.: Online adaptive local multiscale model reduction for heterogeneous problems in perforated domains. Appl. Anal. 96, 2002–2031 (2017)

    Article  MathSciNet  Google Scholar 

  14. Oleinik, O.A., Shamaev, A.S., Yosifian, G.A.: Mathematical Problems in Elasticity and Homogenization. Elsevier, New York City (2008)

    MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the grant of the Russian Scientific Found (N 17-71-20055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Alekseev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alekseev, V., Tyrylgin, A., Vasilyeva, M. (2019). Generalized Multiscale Finite Element Method for Elasticity Problem in Fractured Media. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11539-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11538-8

  • Online ISBN: 978-3-030-11539-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics