Harmonic Holes as the Submodules of Brain Network and Network Dissimilarity | SpringerLink
Skip to main content

Harmonic Holes as the Submodules of Brain Network and Network Dissimilarity

  • Conference paper
  • First Online:
Computational Topology in Image Context (CTIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11382))

Included in the following conference series:

Abstract

Persistent homology has been applied to brain network analysis for finding the shape of brain networks across multiple thresholds. In the persistent homology, the shape of networks is often quantified by the sequence of k-dimensional holes and Betti numbers. The Betti numbers are more widely used than holes themselves in topological brain network analysis. However, the holes show the local connectivity of networks, and they can be very informative features in analysis. In this study, we propose a new method of measuring network differences based on the dissimilarity measure of harmonic holes (HHs). The HHs, which represent the substructure of brain networks, are extracted by the Hodge Laplacian of brain networks. We also find the most contributed HHs to the network difference based on the HH dissimilarity. We applied our proposed method to clustering the networks of 4 groups, normal controls (NC), stable and progressive mild cognitive impairment (sMCI and pMCI), and Alzheimer’s disease (AD). The results showed that the clustering performance of the proposed method was better than that of network distances based on only the global change of topology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Batagelj, V., Mrvar, A.: Pajek - analysis and visualization of large networks. In: Jünger, M., Mutzel, P. (eds.) Graph Drawing Software. Mathematics and Visualization, pp. 77–103. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-18638-7_4

    Chapter  Google Scholar 

  2. Carlsson, G., Collins, A., Guibas, L.J.: Persistence barcodes for shapes. Int. J. Shape Model. 11, 149–187 (2005)

    Article  Google Scholar 

  3. Carlsson, G., Ishkhanov, T., de Silva, V., Zomorodian, A.: On the local behavior of spaces of natural images. Int. J. Comput. Vis. 76(1), 1–12 (2008)

    Article  MathSciNet  Google Scholar 

  4. Choi, H., Jin, K.H.: Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav. Brain Res. 344, 103–109 (2018). https://doi.org/10.1016/j.bbr.2018.02.017. https://www.sciencedirect.com/science/article/pii/S0166432818301013

    Article  Google Scholar 

  5. Chung, M.K., Bubenik, P., Kim, P.T.: Persistence diagrams of cortical surface data. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 386–397. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02498-6_32

    Chapter  Google Scholar 

  6. Chung, M.K., Villalta-Gil, V., Lee, H., Rathouz, P.J., Lahey, B.B., Zald, D.H.: Exact topological inference for paired brain networks via persistent homology. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 299–310. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_24

    Chapter  Google Scholar 

  7. Chung, M.K., et al.: Topological brain network distances. arXiv:1809.03878 [stat.AP] (2018). https://arxiv.org/abs/1809.03878

  8. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37, 103–120 (2007)

    Article  MathSciNet  Google Scholar 

  9. Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Warner, F., Zucker, S.: Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. In: Proceedings of the National Academy of Sciences, pp. 7426–7431 (2005)

    Google Scholar 

  10. Edelsbrunner, H., Harer, J.: Persistent homology - a survey. Contemp. Math. 453, 257–282 (2008)

    Article  MathSciNet  Google Scholar 

  11. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society Press, New York (2009)

    Book  Google Scholar 

  12. Friedman, J.: Computing Betti numbers via combinatorial Laplacians. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, pp. 386–391 (1996)

    Google Scholar 

  13. Horak, D., Jost, J.: Spectra of combinatorial Laplace operators on simplicial complexes. Adv. Math. 244, 303–336 (2013)

    Article  MathSciNet  Google Scholar 

  14. Kim, Y.-J., Kook, W.: Harmonic cycles for graphs. Linear Multilinear Algebra, 1–11 (2018). https://doi.org/10.1080/03081087.2018.1440519

  15. Lee, H., Chung, M.K., Kang, H., Choi, H., Kim, Y.K., Lee, D.S.: Abnormal hole detection in brain connectivity by kernel density of persistence diagram and Hodge Laplacian. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 20–23, April 2018. https://doi.org/10.1109/ISBI.2018.8363514

  16. Lee, H., Chung, M.K., Kang, H., Kim, B.N., Lee, D.S.: Persistent brain network homology from the perspective of dendrogram. IEEE Trans. Med. Imaging 31, 2267–2277 (2012)

    Article  Google Scholar 

  17. Lee, H., Chung, M.K., Kang, H., Lee, D.S.: Hole detection in metabolic connectivity of alzheimer’s disease using k–laplacian. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, LNCS, vol. 8675, pp. 297–304. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10443-0_38

    Google Scholar 

  18. Lim, L.H.: Hodge Laplacians on graphs. Geometry and topology in statistical inference. In: Proceedings of Symposia in Applied Mathematics, vol. 73 (2015)

    Google Scholar 

  19. Petri, G., et al.: Homological scaffolds of brain functional networks. J. Roy. Soc. Interface 11(101), 20140873 (2014). https://doi.org/10.1098/rsif.2014.0873

    Article  Google Scholar 

  20. Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for topological machine learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4741–4748, June 2015

    Google Scholar 

  21. Rolls, E.T., Joliot, M., Tzourio-Mazoyer, N.: Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage 122, 1–5 (2015)

    Article  Google Scholar 

  22. Sanabria-Diaz, G., Martìnez-Montes, E., Melie-Garcia, L., Alzheimer’s Disease Neuroimaging Initiative: Glucose metabolism during resting state reveals abnormal brain networks organization in the Alzheimer’s disease and mild cognitive impairment. PLOS ONE 8(7), 1–25 (2013). https://doi.org/10.1371/journal.pone.0068860

    Article  Google Scholar 

  23. Singh, G., Memoli, F., Ishkhanov, T., Sapiro, G., Carlsson, G., Ringach, D.L.: Topological analysis of population activity in visual cortex. J. Vis. 8, 1–18 (2008)

    Article  Google Scholar 

  24. Sizemore, A., Giusti, C., Kahn, A., Vettel, J., Betzel, R., Bassett, D.: Cliques and cavities in the human connectome. J. Comput. Neurosci. 44, 115–145 (2018)

    Article  MathSciNet  Google Scholar 

  25. Solo, V., et al.: Connectivity in fMRI: blind spots and breakthroughs. IEEE Trans. Med. Imaging 37(7), 1537–1550 (2018). https://doi.org/10.1109/TMI.2018.2831261

    Article  Google Scholar 

  26. Sporns, O., Tononi, G., Edelman, G.: Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb. Cortex 10(2), 127–141 (2000). https://doi.org/10.1093/cercor/10.2.127

    Article  Google Scholar 

  27. Sporns, O., Betzel, R.F.: Modular brain networks. Ann. Rev. Psychol. 67, 19.1–19.28 (2016)

    Article  Google Scholar 

  28. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33, 249–274 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at http://adni.loni.usc.edu. This work is supported by Basic Science Research Program through the National Research Foundation (NRF) (No. 2013R1A1A2064593 and No. 2016R1D1A1B03935463), NRF Grant funded by MSIP of Korea (No. 2015M3C7A1028926 and No. 2017M3C7A1048079), NRF grant funded by the Korean Government (No. 2016R1D1A1A02937497, No. 2017R1A5A1015626, and No. 2011-0030815), and NIH grant EB022856.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyekyoung Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, H. et al. (2019). Harmonic Holes as the Submodules of Brain Network and Network Dissimilarity. In: Marfil, R., Calderón, M., Díaz del Río, F., Real, P., Bandera, A. (eds) Computational Topology in Image Context. CTIC 2019. Lecture Notes in Computer Science(), vol 11382. Springer, Cham. https://doi.org/10.1007/978-3-030-10828-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10828-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10827-4

  • Online ISBN: 978-3-030-10828-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics