Abstract
We propose an algorithm for persistence homology computation of orientable 2-dimensional (2D) manifolds with or without boundary (meshes) represented by 2D combinatorial maps. Having as an input a real function h on the vertices of the mesh, we first compute persistent homology of filtrations obtained by adding cells incident to each vertex of the mesh, The cells to add are controlled by both the function h and a parameter \(\delta \). The parameter \(\delta \) is used to control the number of cells added to each level of the filtration. Bigger \(\delta \) produces less levels in the filtration and consequently more cells in each level. We then simplify each level (cluster) by merging faces of the same cluster. Our experiments demonstrate that our method allows fast computation of persistent homology of big meshes and it is persistent-homology aware in the sense that persistent homology does not change in the simplification process when fixing \(\delta \).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The \(L_{\infty }\)-distance between points \(u = (u_1, u_2)\) and \(v = (v_1, v_2)\) in the extended plane is \( \max \{|u_1 - v_1|, |u_2 - v_2|\}\).
- 2.
References
Dey, T.K., Edelsbrunner, H., Guha, S.: Computational topology. In: Advances in Discrete and Computational Geometry. American Mathematical Society, pp. 109–143 (1999)
Bern, M.W., et al.: Emerging challenges in computational topology, CoRR cs.CG/9909001
Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (1999)
Edelsbrunner, H., Harer, J.: Computational Topology - An Introduction. American Mathematical Society (2010)
Günther, D., Reininghaus, J., Wagner, H., Hotz, I.: Efficient computation of 3D Morse-Smale complexes and persistent homology using discrete Morse theory. Vis. Comput. 28(10), 959–969 (2012)
Robins, V., Wood, P., Sheppard, A.: Theory and algorithms for constructing discrete morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646–1658 (2011)
Damiand, G., Gonzalez-Diaz, R.: Parallel homology computation of meshes. In: Bac, A., Mari, J.-L. (eds.) CTIC 2016. LNCS, vol. 9667, pp. 53–64. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39441-1_6
Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-manifolds. Int. J. Comput. Geom. Appl. 4(3), 275–324 (1994)
Damiand, G., Lienhardt, P.: Combinatorial Maps: Efficient Data Structures for Computer Graphics and Image Processing. A. K Peters/CRC Press (2014)
Damiand, G., Peltier, S., Fuchs, L.: Computing homology for surfaces with generalized maps: application to 3D images. In: Bebis, G., et al. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 235–244. Springer, Heidelberg (2006). https://doi.org/10.1007/11919629_25
Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
Gonzalez-Diaz, R., Real, P.: On the cohomology of 3D digital images. Discrete Appl. Math. 147(2–3), 245–263 (2005)
Gonzalez-Diaz, R., Ion, A., Jimenez, M.J., Poyatos, R.: Incremental-decremental algorithm for computing AT-models and persistent homology. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011. LNCS, vol. 6854, pp. 286–293. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23672-3_35
Damiand, G.: Combinatorial maps. In: CGAL User and Reference Manual, 3.9 edn (2011). http://www.cgal.org/Pkg/CombinatorialMaps
Damiand, G.: Linear cell complex. In: CGAL User and Reference Manual, 4.0 edn (2012). http://www.cgal.org/Pkg/LinearCellComplex
Damiand, G., Gonzalez-Diaz, R., Peltier, S.: Removal operations in nD generalized maps for efficient homology computation. In: Ferri, M., Frosini, P., Landi, C., Cerri, A., Di Fabio, B. (eds.) CTIC 2012. LNCS, vol. 7309, pp. 20–29. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30238-1_3
Damiand, G., Gonzalez-Diaz, R., Peltier, S.: Removal and contraction operations in nD generalized maps for efficient homology computation, CoRR abs/1403.3683
Acknowledgments
This research has been partially supported by MINECO, FEDER/UE under grant MTM2015-67072-P. We thank the anonymous reviewers for their valuable comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Damiand, G., Gonzalez-Diaz, R. (2019). Persistent Homology Computation Using Combinatorial Map Simplification. In: Marfil, R., Calderón, M., Díaz del Río, F., Real, P., Bandera, A. (eds) Computational Topology in Image Context. CTIC 2019. Lecture Notes in Computer Science(), vol 11382. Springer, Cham. https://doi.org/10.1007/978-3-030-10828-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-10828-1_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-10827-4
Online ISBN: 978-3-030-10828-1
eBook Packages: Computer ScienceComputer Science (R0)