Elements for a History of Artificial Intelligence | SpringerLink
Skip to main content

Elements for a History of Artificial Intelligence

  • Chapter
  • First Online:
A Guided Tour of Artificial Intelligence Research

Abstract

Artificial intelligence (AI) is a young scientific field, which like other domains of information processing sciences, was born in the middle of the XXth century, with the arrival of the first computers. However, much more long-standing concerns have contributed to its final emergence. They can be broadly articulated around two main issues: the formalization of reasoning and learning mechanisms and the design of machines having autonomous capabilities in terms of computation and action. Over time, such machines have been first dreamed, before being designed and made real. The progressive achievements have fed the imagination of philosophers, but also writers, movie makers, and other artists. This is the reason why in the few elements of the great historical epic that we sketch here, references to all sectors of human creativity are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The application for getting a financial support, written in the summer of 1955, and entitled “A proposal for the Dartmouth summer research project on artificial intelligence” (where the name of the new research area was already coined!), was signed by John McCarthy, Marvin Minsky, Nathaniel Rochester and Claude Shannon (McCarthy et al. 2006).

  2. 2.

    Apart from the 4 signees of the project appearing in the above footnote, they were Trenchard More, Allen Newell, Arthur Samuel, Oliver Selfridge, Herbert A. Simon, and Ray Solomonoff. Interestingly enough, it is worth noticing that these 10 participants were already carriers of the large variety of research directions that can still be observed in AI.

  3. 3.

    A year between parentheses is at the same time a publication date and indicates a reference to a publication of the author cited just before in the text. Exceptionally for the works from Antiquity to Middle Ages, the year used in the references is one of a modern edition and not the one of the first publication.

  4. 4.

    Arguments for and against the existence of God, and their discussions have a very long history from Anselm to Kurt Gödel (1995) (his proof is stated in second-order modal logic); see the monograph by Sobel (2004) for a complete exposition of these arguments. Thomas Aquinas (1975, 2006) himself disputes Anselm’s ontological argument (see (Sousa Silvestre 2015) for a modern logical discussion) and proposed five other proofs (Aquinas 1975, 2006); see also Mavrodes (1963), Wade (1967) on logical accounts of God omnipotence paradoxes.

  5. 5.

    Paul the Persian is an East Syrian theologian and philosopher who worked at the court of the Sassanid king Khosrow I (501–579), and wrote several treatises and commentaries on Aristotle (Teixidor 2003), which had some influence on medieval Islamic philosophy.

  6. 6.

    A version of this section and of the next two sections has already appeared in Marquis et al. (2014).

  7. 7.

    Some other authors would be also worth mentioning, such as the Flemish philosopher Arnold Geulincx (1624–1669), author of treatises of logic entitled Logica fundamentis suis restituta (1662) and Methodus inveniendi argumenta (1663).

  8. 8.

    The text continues with “Now to compute, is either to collect the sum of many things that are added together, or to know what remains when one thing is taken out of another. Ratiocination, therefore, is the same with addition and subtraction;” (or in Latin: “Computare vero est plurium rerum simul additarum summam colligere, vel una re ab alia detracta cognoscere residuum. Ratiocinari igitur idem est quod addere and subtrahere”). One page after one reads: “We must not therefore think that computation, that is, ratiocination, has place only in numbers, as if man were distinguished from other living creatures (which is said to have been the opinion of Pythagoras) by nothing but the faculty of numbering; for magnitude, body, motion, time, degrees of quality, action, conception, proportion, speech and names (in which all the kinds of philosophy consist) are capable of addition and subtraction.” (or in Latin: “Non ergo putandum est computationi, id est, ratiocinationi in numeris tantum locum esse, tanquam homo a caeteris animantibus (quod censuisse narratur Pythagoras) sola numerandi facultate distinctus esset, nam and magnitudo magnitudini, corpus corpori, motus motui, tempus tempori, gradus gradui, actio actioni, conceptus conceptui, proportio proportioni, oratio orationi, nomen, nomini (in quibus omne Philosophiae genus continetur) adjici adimique potest.”). In fact, the anecdote reported does not concern Pythagore, but Platon, see Hobbes of Malmesbury (1655) note p. 13. Moreover, as early as 1651 (Hobbes of Malmesbury 1651) in chapter V (Of Reason and Science) of Of Man, the first part of his Leviathan, Hobbes had given a preliminary version whose beginning was “When a man ‘reasoneth’ he does nothing else but conceive a sum total, from ‘addition’ of parcels, or conceive a remainder, from ‘subtraction’ of one sum from another; which, if it be done by words, is conceiving of the consequence of the names of all the parts, to the name of the whole; or from the names of the whole and one part, to the name of the other part.”

  9. 9.

    “I worked especially hard to show that if any such machines had the organs and outward shape of a monkey or of some other animal that doesn’t have reason, we couldn’t tell that they didn’t possess entirely the same nature as these animals; whereas if any such machines bore a resemblance to our bodies and imitated as many of our actions as was practically possible, we would still have two very sure signs that they were nevertheless not real men. The first is that they could never use words or other constructed signs, as we do to declare our thoughts to others. We can easily conceive of a machine so constructed that it utters words, and even utters words that correspond to bodily actions that will cause a change in its organs (touch it in one spot and it asks “What do you mean?”, touch it in another and it cries out “That hurts!”, and so on); but not that such a machine should produce different sequences of words so as to give an appropriately meaningful answer to whatever is said in its presence - which is something that the dullest of men can do. Secondly, even though such machines might do some things as well as we do them, or perhaps even better, they would be bound to fail in others; and that would show us that they weren’t acting through understanding but only from the disposition of their organs. For whereas reason is a universal instrument that can be used in all kinds of situations, these organs need some particular disposition for each particular action; hence it is practically impossible for a machine to have enough different organs to make it act in all the contingencies of life in the way our reason makes us act.” (Transl. J. Bennett).

  10. 10.

    In French: “comment l’esprit humain se forme des idées, les compare pour en porter des jugements et enchaîner ces jugements pour déduire les uns des autres”.

  11. 11.

    Although researchers nowadays speak of ‘Euler diagrams’, similar diagrams have already been used by many authors before (Lemanski 2017). Among others, the diagrams of Juan Luis Vives (1493–1540) (who used a ‘V’-like nested representation for the three items in the syllogism in Barbara “Any B is a C, but any A is a B, therefore any A is a C ”, in a treatise entitled De Censura Veri, part of his encyclopedic compendium De Disciplinis Libri), as well as those of Nicolaus Reimarus Ursus (Nicolaus Reimers) (1551–1600) in his Metamorphosis Logicae (Strasbourg,1589), of Erhard Weigel (1625–1699) in his Philosophia Mathematica, Theologia Naturalis Solida (1693), of Johann Christoph Sturm (1635–1703) in the Universalia Euclidea (1661), or still those of Leibniz, and Johann Christian Lange (1669–1756) can be mentioned as precursors of the logic diagrams used by Euler.

  12. 12.

    This result was already anticipated in the line diagrams (using pairs of segments) by Abū al-Barakāt; see Hodges (2018).

  13. 13.

    Stuart Mill is perhaps better known as an economist, and a strong advocate of utilitarism (Stuart Mill 1863), following Jérémy Bentham (1748–1832), i.e. a consequentialist approach to decision making.

  14. 14.

    Carnap (1930) also underlines that from the tautological nature of deduction in modern logic “results the impossibility of any metaphysics which could pretend to conclude from experience to transcendent”.

  15. 15.

    Incidentally, it is notable that the first issue of one of the very first journals in computer science (Collective 1952), a journal dedicated to both computational machinery and theoretical logic, included in its table of contents a paper on a tri-valued logic by Bolesław Sobociński (1906–1980), which has turned out to be the logic of conditional objects (see chapter “Representations of Uncertainty in Artificial Intelligence: Probability and Possibility” in this volume).

  16. 16.

    In the previous period, some economists such as Léon Walras (1834–1910) and Carl Menger (1840–1921) (Karl Menger’s father), as well as the logician William Stanley Jevons, introduce the notion of marginal utility in value theory for reflecting the interest a particular agent takes in a good or service, while Vilfredo Pareto (1848–1923), who advocated an ordinal view of utility, characterized situations where one cannot increase an agent’s well-being without decreasing another agent’s one, giving rise to the notion of optimum which bears his name; besides, he makes a distinction between logic actions like the ones studied in economy and non-logical actions studied in sociology (Pareto 1961).

  17. 17.

    His father was also a distinguished economist, fond of logic (Keynes 1900).

  18. 18.

    This theory was rediscovered independently by Lotfi Zadeh (1921–2017) in his approach to the representation of linguistic information, and for its qualitative counterpart, by the philosopher David Lewis (1941–2001) in his work on counterfactuals (1973).

  19. 19.

    The neurons as basic units of the nervous system were discovered by the neuro-anatomist S. Ramon y Cajal (1852–1934) in the late1880’s.

  20. 20.

    The reader could consult the website http://en.wikipedia.org/wiki/Artificial_intelligence_in_fiction.

  21. 21.

    http://www.oulipo.net/.

  22. 22.

    http://www.alamo.free.fr/.

  23. 23.

    Paul Braffort has also been the author of the first French monograph on AI (1968). We are very glad that he kindly accepted to write the foreword of the Volume 3 of this treatise.

  24. 24.

    For more details, the reader may, for example, consult the website http://homepages.inf.ed.ac.uk/rbf/AIMOVIES/AImovai.htm.

  25. 25.

    With the help of Claude Shannon and Nathaniel Rochester (1919–2001). The latter was the designer of the IBM701 computer and the author of the first program in assembly language, and had interests close to AI (Rochester et al. 1956). The request for support, already titled “A proposal for the Dartmouth summer research project on Artificial Intelligence” dates back from the previous summer and was jointly signed by McCarthy, Minsky, Rochester and Shannon (McCarthy et al. 2006). The six other participants were Trenchard More, Allen Newell, Arthur Samuel, Oliver Selfridge, Herbert A. Simon, and Ray Solomonoff (1926–2009). This last researcher, who was a pioneer of the concept of algorithmic probability, circulated a report (1956) the same year, which was the beginning of his future theory of universal inductive inference and one of the first approaches to probability-based machine learning in artificial intelligence (this latter phrase is used in his report of August 1956!). As to Trenchard More, he was preparing a thesis on the concept of natural deduction which he later defended (1962).

  26. 26.

    Pattern recognition is born in the same time as AI (Dinneen 1955; Selfridge 1955; Clark and Farley 1955). Moreover Selfridge’s work has in turn influenced the work of the cyberneticians Jerome Lettvin (1920–2011), Humberto Maturana (born in 1928), Warren McCulloch, and Walter Pitts (Lettvin et al. 1959).

  27. 27.

    http://www.doc.ic.ac.uk/~shm/MI/mi.html.

  28. 28.

    Alain Colmerauer (1941–2017), the father of the PROLOG programming language, was also the inventor of the founding principles of constraint logic programming. We are very glad that he kindly accepted to write the foreword of the Volume 2 of this treatise.

  29. 29.

    Samuel’s program initiated the use of tree-pruning procedures of alpha-beta type, and already had skills to learn its cost function.

  30. 30.

    In relation to theorem proving and then to chess, let us also cite Jacques Pitrat (1970, 1977), who among other things highlighted the role of metacognition in problem solving and learning processes (2000). We are very glad that he kindly accepted to write the foreword of this volume.

  31. 31.

    Other experiments with mobile robots of that time are the Stanford “Cart” project in the late 1960s, and a bit later the French “HILARE” project (Giralt et al. 1979) and the Carnegie Mellon University rover (Moravec 1982).

  32. 32.

    In one of the answers to this report, that of Christopher Longuet-Higgins (1923–2004), one can find for the first time, the expression “cognitive science (s)” (Hünefeldt and Brunetti 2004). Longuet-Higgins was a co-founder with Richard Gregory (1923–2010) and Donald Michie (1923–2007) of the Department of Machine Intelligence and Perception of the University of Edinburgh in 1967.

References

  • Abraham M, Gabbay DM, Hazut G, Maruvka YE, Schild U (2010) Studies in talmudic logic. Vol. 2: the textual inference rules Klal uPrat (How the Talmud defines sets). College Publications

    Google Scholar 

  • Abraham M, Gabbay DM, Schild UJ (2010–2013) Studies in talmudic logic. Vol. 1: Non-deductive inferences in the Talmud. Vol. 3: Talmudic deontic logic. Vol. 5: Resolution of conflicts and normative loops in the Talmud. Vol. 10: Principles of Talmudic logic. College Publications

    Google Scholar 

  • Abraham M, Belfer I, Gabbay DM, Schild U (2011–2016) Studies in Talmudic logic. Vol. 4: Temporal logic in the Talmud. Vol. 7: Delegation in Talmudic logic. Vol. 8: Synthesis of concepts in the Talmud. Vol. 9: Analysis of concepts and states in Talmudic reasoning. Vol. 11: Platonic realism and Talmudic reasoning. Vol. 12: Fuzzy logic and quantum states in Talmudic reasoning. Vol. 13: Partition problems in Talmudic reasoning. College Publications

    Google Scholar 

  • Akrami M (2017) From logic in Islam to islamic logic. Log Univers 11(1):61–83

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson AR (ed) (1964) Minds and machines. Prentice-Hall, Includes: Introduction (A.R. Anderson), Computing machines and intelligence (A.M. Turing), The mechanical concept of mind (M. Scriven), Minds, machines and Gödel (J.R. Lucas), The imitation game (K. Gunderson), Minds and machines (H. Putman), The feelings of robots (P. Ziff), Professor Ziff on robots (J.J.C. Smart), Robots Inc (N. Smart)

    Google Scholar 

  • Anselm of Cantorbery (2001) Proslogion. Hackett Publishing Company, Indianapolis, with the replies by Gaunilo and then by Anselm. Translation and introduction by Th. Williams

    Google Scholar 

  • Apollonius of Rhodes (1959) The Voyage of argo: the argonautica. Penguin Classics

    Google Scholar 

  • Aquinas T (1975) Summa contra gentiles. Book one: god. University of Notre Dame Press

    Google Scholar 

  • Aquinas T (2006) In: Leftow B, Davies B (eds) Summa theologiae, questions on god. Cambridge University Press, Cambridge

    Google Scholar 

  • Arnauld A, Nicole P (1662) La Logique ou l’Art de Penser contenant, outre les règles communes, plusieurs observations nouvelles, propres à former le jugement. Flammarion, Champs, 1978; English translate: Logic or the art of thinking: containing, besides common rules, several new observations appropriate for forming judgement. Cambridge University Press, Cambridge, 1996

    Google Scholar 

  • Arrow KJ (1951) Social Choice and Individual Values, 2nd edn. Yale University Press, New Haven, 1963

    Google Scholar 

  • Ashby WR (1952) Design for a brain. Chapman & Hall, London

    Google Scholar 

  • Ashby WR (1956) An introduction to cybernetics. Chapman & Hall, London

    Google Scholar 

  • Asimov I (1950) I, Robot. Gnome Press, New York

    Google Scholar 

  • Augustine of Hippo (1995) Against the academicians. The teacher. Hackett Publishing Company, Indianapolis, translated with introduction and notes by P. King

    Google Scholar 

  • Austin JL (1955) How to do things with words. Oxford University Press, Oxford, 1962; The William James lectures, Harvard University, Cambridge, 1955

    Google Scholar 

  • Bacon F (1605) Of the proficience and advancement of learning, divine and human. Oxford University Press, Oxford, 1974; Everyman Paperbacks, 1991

    Google Scholar 

  • Bacon R (2009) The art and science of logic [Summulae Dialectices]. Mediaeval sources in translation, No. 47, Pontifical institute of mediaeval studies, Toronto, translated with introduction and notes by Th. S. Maloney

    Google Scholar 

  • Bain A (1870) Logic. Part first: deduction. Part second: induction. Longmans, Green and Co., London, 784 p

    Google Scholar 

  • Bar-Hillel Y (1954) Indexical expressions. Mind 63(251):359–379

    Article  Google Scholar 

  • Bar-Hillel Y (1963) Is information retrieval approaching a crisis? American documentation 14(ii):95–98

    Google Scholar 

  • Barnes J (1983) Terms and sentences: theophrastus on hypothetical syllogisms. Proc Br Acad 69:279–326

    Google Scholar 

  • Barr A, Feigenbaum EA (eds) (1981) The handbook of artificial intelligence, vol I. William Kaufman, Los Altos

    Google Scholar 

  • Barr A, Feigenbaum EA (eds) (1982) The handbook of artificial intelligence, vol II. Addison-Wesley, Menlo Park

    Google Scholar 

  • Bateson G (1972) Steps to an ecology of mind: collected essays in anthropology, psychiatry, evolution, and epistemology. Chandler Publishing Company, San Francisco

    Google Scholar 

  • Bayes T (1763) An essay towards solving a problem in the doctrine of chances. Philos Trans R Soc Lond 53:370–418, by the Late Rev. Mr. Bayes, F.R.S. Communicated by Mr. Price, in a Letter to John Canton, A.M.F.R.S

    Google Scholar 

  • Bellhouse DR (2000) De vetula: a medieval manuscript containing probability calculations. Int Stat Rev 68(2):123–136

    Article  MATH  Google Scholar 

  • Berliner HJ, Greenblatt R, Pitrat J, Samuel A, Slate D (1977) Computer game playing. In: Reddy R (ed) Proceedings of the 5th international joint conference on artificial intelligence, Cambridge, MA, pp 975–982

    Google Scholar 

  • Bernanos G (1947) La France contre les Robots. Robert Laffont

    Google Scholar 

  • Bernstein A, De V Roberts M (1958) Computer vs. chess-player. Sci Am 198:96–105

    Google Scholar 

  • Bessot D, Lanier D, Le Goff JP, Leparmentier J, Levard M, A-M Sainson DT, Domain R (2006) L’Espérance du Hollandais ou le Premier Traité de Calcul du Hasard. Ellipses

    Google Scholar 

  • Blanché R (1966) Structures Intellectuelles. Essai sur l’Organisation Systématique des Concepts. Librairie philosophique J. Vrin, Paris

    Google Scholar 

  • Blanché R (1970) La Logique et son Histoire d’Aristote à Russell. Amand Colin, collection U, 2nd ed. augmented with a chapter “La Logique depuis Russell” by J. Dubucs, 1996

    Google Scholar 

  • Blanché R (1973) Le Raisonnement. Presses Universitaires de France, Bibliothèque de Philosophie Contemporaine, Paris

    Google Scholar 

  • Bledsoe WW (1971) Splitting and reduction heuristics in automatic theorem proving. Artif Intell 2(1):55–77

    Article  MATH  Google Scholar 

  • Bobrow DG (1964) A question-answering system for high school algebra word problems. In: Proceedings of the fall joint computer conference (AFIPS ’64), Part I, 27–29 October 1964. ACM, pp 591–614

    Google Scholar 

  • Bobzien S (2004) Peripatetic hypothetical syllogistic in Galen. Rhizai J Anc Philos Sci 2:57–102

    Google Scholar 

  • Bocheński IM (1947) La Logique de Théophraste. Librairie de l’Université de Fribourg en Suisse

    Google Scholar 

  • Bochvar DA (1984) On the consistency of a three-valued logical calculus. Topoi 3(1):3–12, translate by M. Bergmann of a 1938 article

    Google Scholar 

  • Bolzano B (1837) Wissenschaftslehre. Versuch einer ausfürlichen und grösstentheils neuen Darstellung der Logik mit steter Rücksicht auf deren bisherige Bearbeiter. J E von Seidel, Sulzbach, edited and translated by R. George, as “Theory of Science. Attempt at a detailed an in the main novel exposition of logic with constant attention to earlier author”, University of California Press, California, 1972

    Google Scholar 

  • Boole G (1847) The mathematical analysis of logic, being an essay towards a calculus of deductive reasoning. Macmillan, Cambridge

    MATH  Google Scholar 

  • Boole G (1854) An investigation of the laws of thought on which are founded the mathematical theories of logic and probabilities. Macmillan, Cambridge, reprinted by Dover, New York, 1958

    Google Scholar 

  • Boureau-Deslandes AF (1742) Pigmalion, ou la statue animée. Samuel Harding, London, Pigmalion, oder, Die belebte Statüe translated by J.J. Bodmer, Hamburg Martini 1748

    Google Scholar 

  • Braffort P (1968) L’Intelligence Artificielle. P.U.F., Paris

    Google Scholar 

  • Braithwaite RB (1932) Lewis Carroll as logician. Math Gaz 16(219):174–178

    Article  MATH  Google Scholar 

  • Brooks R (1989) A robot that walks; emergent behaviors from a carefully evolved network. Neural Comput 1(2):253–262

    Article  Google Scholar 

  • Bru MF, Bru B (2018) Le jeu de l’infini et du hasard - Vol. 1: Les probabilités dénombrables à la portée de tous ; Vol. 2: Les probabilités indénombrables à la portée de tous. Annexes et appendices. Presses Université de Franche-Comté, Besançon

    Google Scholar 

  • Buchanan BG (2005) A (very) brief history of artificial intelligence. AI Mag 26(4):53–60

    Google Scholar 

  • Buchanan BG, Shortliffe EH (eds) (1984) Rule-based expert systems - MYCIN experiments of the Stanford heuristic programming. Addison-Wesley, Reading

    Google Scholar 

  • Buchanan BG, Eckroth J, Smith R (2013) A virtual archive for the history of AI. AI Mag 34(2):86–98

    Article  Google Scholar 

  • Bush V (1945) As we may think. Atl Mon 176(1):101–108

    Google Scholar 

  • Busquets J (2006) Logique et Langage: Apports de la Philosophie Médiévale. Presses Universitaires de Bordeaux

    Google Scholar 

  • Butler S (1872) Erewhon, or, over the range. Trubner & Co, London, includes three chapters, numbered 23, 24, 25, intitled “The Books of Machines”, first published as articles since 1863

    Google Scholar 

  • Byrne O (1841) The doctrine of proportion clearly developed: on a comprehensive, original, and very easy system; or, the fifth book of Euclid simplified. J. Williams, London

    Google Scholar 

  • Byrne O (1847) In: Oechslin W (ed) The first six books of the elements of Euclid in which coloured diagrams and symbols are used instead of letters for the greater ease of learners. William Pickering, London, reprinted by Taschen Gmbh, 2013

    Google Scholar 

  • Candaux JD (1993) Monsieur de Lubières, encyclopédiste. Recherches sur Diderot et sur l’Encyclopédie 15:71–96

    Article  Google Scholar 

  • Capek K (1921) Rossumovi Univerzál Roboti - R.U.R. (Rossum’s Universal Robots). English translate R.U.R. and The Insect Play (with J. Capek), Oxford Paperbacks, 1963

    Google Scholar 

  • Carnap R (1930) Die alte und die neue logik. Erkenntnis 1(1):12–26, English translate by I. Levi, The old and the new logic. In: Ayer AJ (ed) Logical positivism. Free Press, 1959, pp 133–146

    Google Scholar 

  • Carnap R (1942) Meaning and necessity: a study in semantics and modal logic, 2nd edn. University of Chicago Press, Chicago, 1956

    Google Scholar 

  • Carnap R, Bar-Hillel Y (1952) An outline of the theory of semantic information. MIT, Research Laboratory of Electronics, Technical report 247

    Google Scholar 

  • Carroll L (1896) Symbolic logic. Part 1. Elementary. Macmillan and Co., London, Part 2. Advanced

    Google Scholar 

  • Certigny H (1954) Les Automates. Gallimard, Paris

    Google Scholar 

  • Chassay JF (2010) L’imaginaire de l’être artificiel. Presses Universitaires du Québec

    Google Scholar 

  • Clair J, Szeemann H (eds) (1975) Junggesellenmaschinen / Les Machines Célibataires. Alfieri, Venezia, exhibition catalogue, Italian/English version Le Macchine Celibi / The Bachelor Machines, Rizzoli, New York, 236 p

    Google Scholar 

  • Clark WA, Farley BG (1955) Generalization of pattern recognition in a self-organizing system. In: Proceedings of the Western joint computer conference, 1–3 March 1955, Institute of Radio Engineers, New York, pp 86–90

    Google Scholar 

  • Cohen J (1968) Les Robots Humains dans le Mythe et dans la Science. Librairie philosophique Vrin

    Google Scholar 

  • Cohen LJ (1970) The implications of induction. Methuen, London

    Google Scholar 

  • Cohen PR, Feigenbaum EA (eds) (1986) The handbook of artificial intelligence, vol III. Addison-Wesley, London

    Google Scholar 

  • Cohen PR, Feigenbaum EA (eds) (1990) The handbook of artificial intelligence, vol IV. Addison-Wesley, London

    Google Scholar 

  • Collective (1904) Logique et Philosophie des Sciences. Séances de Section et Séances Générales. \(II^{e}\) Congrès de Philosophie - Genève. Revue de Métaphysique et de Morale T. XII:1037–1046

    Google Scholar 

  • Collective (1952) The foundations of computing machinery (J.D. Goodell); The realization of a universal decision element (T. Lode); Axiomatization of a partial system of three-value calculus of propositions (B. Sobocinski). J Comput Syst 1(1):1–55, publ. by The Institute of Applied Logic, St. Paul MN

    Google Scholar 

  • Collins NL, Michie D (eds) (1967) Machine intelligence 1. Oliver & Boyd, Edinburgh & London, preface by Sir Edward Collingwood

    Google Scholar 

  • Colmerauer A (1978) Metamorphosis grammars. In: Bolc L (ed) Natural language communication with computers. LNCS, vol 63. Springer, Berlin, pp 133–189

    Google Scholar 

  • Colmerauer A, Roussel A (1992) La naissance de Prolog. Internal report, Groupe Intelligence Artificielle, Faculté des Sciences de Luminy, Université Aix-Marseille II, France

    Google Scholar 

  • Condorcet N (1785) Essai sur l’Application de l’Analyse à la Probabilité des Décisions Rendues à la Pluralité des Voix. Reprinted by American Mathematical Society, 1972

    Google Scholar 

  • Conti A (2017) Paul of venice. In: Zalta EN (ed) The Stanford encyclopedia of philosophy. Metaphysics Research Lab, Stanford University

    Google Scholar 

  • Couffignal L (1952) Les Machines à Penser. Les Editions de Minuit, Paris, 2nd edn. revised, 1964

    Google Scholar 

  • Couturat L (1901) La Logique de Leibniz: d’après des documents inédits. Félix Alcan, Paris, reprinted by OLMS, Hildesheim, 1969 and 1985

    Google Scholar 

  • Couturat L (1903) Opuscules et Fragments Inédits de Leibniz. Extraits des manuscrits de la bibliothèque royale de Hanovre. Félix Alcan, Paris, 1903; reprinted by Olms, 1966

    Google Scholar 

  • Couturat L (1905) L’Algèbre de la Logique. Gauthier-Villars, Paris

    MATH  Google Scholar 

  • Craik KJW (1943) The nature of explanation. Cambridge University Press, Cambridge, reprinted 1967

    Google Scholar 

  • Cramer G (1745) Cours de Logique. Bibliothèque Publique et Universitaire de Genève, MS Trembley 34, 348 pages, structured in 576 paragraphs, unpublished manuscript; partly reproduced (89 p., paragraphs 1–10, 260, 448–547), by Th. Martin, in Journl électronique d’Histoire des Probabilités et des Statistiques 2(1), 2006, 6

    Google Scholar 

  • Crevier D (1993) The tumultuous history of the search for artificial intelligence. Basic books, HarperCollins Publishers, New York

    Google Scholar 

  • Crossley JN (2005) Raymond Llull’s contributions to computer science. Technical report (13 p), Monash University, Clayton, Australia

    Google Scholar 

  • Curley AJ (1996) Augustine’s critique of skepticism. A study of Contra Academicos, Peter Lang, New York

    Google Scholar 

  • Dahan-Dalmedico A (1986) Un texte de philosophie mathématique de Gergonne. Revue d’Histoire des Sciences 39(2):97–126

    Article  MathSciNet  MATH  Google Scholar 

  • Dale E, Michie D (eds) (1968) Machine intelligence 2. Oliver & Boyd, London

    MATH  Google Scholar 

  • Davis M, Putnam H (1960) A computing procedure for quantification theory. J ACM 7(3):201–215

    Article  MathSciNet  MATH  Google Scholar 

  • De Borda JC (1781) Mémoire sur les élections au scrutin. Mémoires de l’Académie Royale des Sciences, pp 657–664

    Google Scholar 

  • de Bovelles C (1510) Ars oppositorum. Translated in French, L’art des opposés by P. Magnard, Vrin, Paris, 1984

    Google Scholar 

  • De Castillon F (1804) Réflexions sur la logique. Mém de l’Acad Royale des Sciences et Belles-Lettres de Berlin, pp 29–49

    Google Scholar 

  • De Castillon F (1805) Mémoire sur un nouvel algorithme logique. Mém de l’Acad Royale des Sciences et Belles-Lettres de Berlin, pp 3–24

    Google Scholar 

  • De Ceriziers R (1650) Le Philosophe François. Antoine Molin, Lyon

    Google Scholar 

  • De Chousy, comte D (1883) Ignis. Rééd. Col. Ressources 114, Slatkine, 1981, English translate Ignis, the Central Fire, Hollywood Comics, 2009

    Google Scholar 

  • De Finetti B (1937) La prévision: ses lois logiques, ses sources subjectives. Annales de l’Institut Poincaré 7:1–68

    MathSciNet  MATH  Google Scholar 

  • De Finetti B (1974) Theory of probability. Wiley, New York

    MATH  Google Scholar 

  • De Lacy PH, De Lacy EA (1941) Philodemus: on methods of inference. A study in ancient empiricism. American Philological Association, Philadelphia, with translation and commentary

    Google Scholar 

  • De Latil P (1953) La Pensée Artificielle. Introduction à la Cybernétique. Gallimard, L’Avenir de la Science 34

    Google Scholar 

  • De Moivre A (1718) Doctrine of chances, or a method of calculating the probability of events in play, 3rd edn. Printed by W. Pearson for the Author, London, 1756

    Google Scholar 

  • De Morgan A (1847) Formal Logic: or, the calculus of inference, necessary and probable. Taylor & Walton, London

    Google Scholar 

  • De Morgan A (1868) On the syllogism and other logical writings. Routledge & Kegan Paul, London, articles 1846–1868; edited with an Introduction by P. Heath, 1966

    Google Scholar 

  • De Unamuno M (1913) Mecanópolis. In: García Blanco M (ed) Obras Completas, Vol. 2: Novelas. Escélicer, Madrid, pp 833–836, 1966

    Google Scholar 

  • De Villiers de l’Isle-Adam A (1886) L’Eve future. Charpentier, English translate The Future Eve, Fantasy and Horror Classics, 2011

    Google Scholar 

  • Delboeuf C (1876) Logique algorithmique: 1. Exposé de la logique déductive au moyen d’un système conventionnel de signes. Deuxième partie: Caractères généraux d’un algorithme. Troisième partie. Revue Philosophique de la France et de l’Etranger 2:225–252, 335–355, 545–595. Also published as a book, Logique Algorithmique. Essai sur un système de signes appliqué à la logique. J. Desoer & C. Muquardt, Liège & Bruxelles, 1877

    Google Scholar 

  • Delpech LJ (1972) La Cybernétique et ses Théoriciens. Casterman / Poche, collection Mutations. Orientations

    Google Scholar 

  • Descartes R (1637) Discours de la Méthode pour bien conduire sa raison, et chercher la vérité dans les sciences. English version: A discourse on the method of correctly conducting one’s reason and of seeking truth in the sciences, translated by I. Maclean, Oxford World’s Classics, 2008

    Google Scholar 

  • Dinneen GP (1955) Programming pattern recognition. In: Proceedings of the Western joint computer conference, 1–3 March 1955, Institute of Radio Engineers, New York, pp 94–100

    Google Scholar 

  • Dipert RR (1994) The life and logical contributions of O.H. Mitchell, Peirce’s gifted student. Trans Charles S Peirce Soc 30(3):515–542

    Google Scholar 

  • Dodgson CL (2001) The political pamphlets and letters of Charles Lutwidge Dodgson and related pieces: a mathematical approach. In: Abeles FF (ed) The pamphlets of Lewis Carroll, vol 3. Lewis Carroll Society of North America, New York

    Google Scholar 

  • Du Crest, comtesse de Genlis SF (1797) Alphonse et Dalinde, ou La féérie de l’Art et de la Nature: conte moral. Berthevin, Orléans

    Google Scholar 

  • Dubarle D (1948) Vers la machine à gouverner ? Le Monde, 28 décembre See also Existe-t-il des machines à penser?, Revue des Questions Scientifiques, Ve série, t. XI, 210–230, 1950, and Scientific Humanism and Christian Thought, Blackfriars, London, 1956

    Google Scholar 

  • Dubois D, Prade H (2012) Abe Mamdani: a pioneer of soft artificial intelligence. In: Trillas E, Bonissone PP, Magdalena L, Kacprzyk J (eds) Combining experimentation and theory - a hommage to Abe Mamdani. Springer, Berlin, pp 49–60

    Google Scholar 

  • Dubucs J, Sandu G (eds) (2005) Les Chemins de la Logique. Pour la Science, dossier \(n^o\) 49

    Google Scholar 

  • Duda RO, Hart PE, Nilsson NJ (1976) Subjective Bayesian methods for rule-based inference systems. In: Proceedings of the national computer conference (AFIPS Conference Proceedings, vol 45), pp 1075–1082, sRI Technical Note 124

    Google Scholar 

  • Duda RO, Gaschnig J, Hart PE (1981) Model design in the PROSPECTOR consultant system for mineral exploration. In: Michie D (ed) Expert systems in the micro-electronic age. Edinburgh University Press, Edinburgh, pp 153–167

    Google Scholar 

  • Dumarsais CC (1730) Traité des Tropes. Reprinted, Fayard, Paris, 1992

    Google Scholar 

  • Dupleix S (1603) La Logique ou Art de Discourir et de Raisonner. Edition de 1607, Fayard, Paris, 1984, 370 p

    Google Scholar 

  • Dutilh Novaes C, Read S (eds) (2016) The Cambridge companion to medieval logic. Cambridge University Press, Cambridge

    Google Scholar 

  • Elcock EW, Michie D (eds) (1977) Machine intelligence 8. Ellis Horwood Ltd. and Wiley, New York

    Google Scholar 

  • Erman LD, Hayes-Roth F, Lesser VR, Reddy DR (1980) The Hearsay-II speech-understanding system: integrating knowledge to resolve uncertainty. Comput Surv 12(2):213–253

    Article  Google Scholar 

  • Euler L (1761, publ. 1768) Lettres cii-cviii. In: Lettres à une Princesse d’Allemagne sur Divers Sujets de Physique & de Philosophie, vol 2; English version: Letters of Euler, on different subjects in natural philosophy, addressed to a German princess 2. J. & J. Harper, 1833

    Google Scholar 

  • Evans TG (1964) A heuristic program to solve geometry-analogy problems. In: Proceedings of the A.F.I.P. spring joint computer Conference, vol 25, pp 5–16

    Google Scholar 

  • Faris JA (1955) The Gergonne relations. J Symb Log 20(3):207–231

    Article  MathSciNet  MATH  Google Scholar 

  • Feigenbaum EA, Feldman J (eds) (1963) Computers and Thought. McGraw-Hill, New York, articles by P. Armer, C. Chomsky, G.P.E. Clarkson, E.A. Feigenbaum, J. Feldman, H. Gelernter, B.F. Green Jr, J.T. Gullahorn, J.E. Gullahorn, J.R. Hansen, C.I. Hovland, E.B. Hunt, K. Laughery, R.K. Lindsay, D.W. Loveland, M. Minsky. U. Neisser, A. Newell, A.L. Samuel, O.G. Selfridge, J.C. Shaw, H.A. Simon, J.R. Slagle, F.M. Tonge, A.M. Turing, L. Uhr, C. Vossler, A.K. Wolf

    Google Scholar 

  • Fidora A, Sierra C (eds) (2011) Ramon Llull: from the Ars Magna to artificial intelligence. Artificial Intelligence Research Institute, IIIA, CSIC, 146 p, Barcelona, Contributions by S. Barberà, M. Beuchot, E. Bonet, A. Bonner, J.M. Colomer, J.N. Crossley, A. Fidora, T. Sales, G. Wyllie

    Google Scholar 

  • Fikes RE, Nilsson NJ (1971) STRIPS: a new approach to the application of theorem proving. Artif Intell 2:189–208

    Article  MATH  Google Scholar 

  • Fodor JA (1978) Tom swift and his procedural grandmother. Cognition 6:229–247

    Article  Google Scholar 

  • Gabbay DM, Woods J (eds) (2004a) Greek, Indian and Arabic logic. Handbook of history of logic, vol 1. Elsevier, Amsterdam

    Google Scholar 

  • Gabbay DM, Woods J (eds) (2004b) The rise of modern logic: from Leibniz to Frege. Handbook of History of Logic, vol 3. Elsevier, Amsterdam

    Google Scholar 

  • Gabbay DM, Woods J (eds) (2008a) British logic in the nineteenth century. Handbook of history of logic, vol 4. Elsevier, Amsterdam

    Google Scholar 

  • Gabbay DM, Woods J (eds) (2008b) Mediaeval and renaissance logic. Handbook of history of logic, vol 2. Elsevier, Amsterdam

    Google Scholar 

  • Galli de Bibiena J (1747) La Poupée. Desjonquères, 1987; English translate The fairy doll. Chapman and Hall, 1925 and Amorous Philandre (Store Window Doll Lives). Avon Book, 1948

    Google Scholar 

  • Geach P, Black M (eds) (1980) Translations from the philosophical writings of Gottlob Frege, 3rd edn. Basil Blackwell (1st edn. 1952)

    Google Scholar 

  • Gelernter H (1959) Realization of a geometry theorem proving machine. In: Proceedings of the international conference on information processing, Paris, pp 273–282

    Google Scholar 

  • Gentzen G (1969) The collected papers of Gerhard Gentzen. Studies in logic and the foundations of mathematics. North-Holland Publising Company, Amsterdam

    Google Scholar 

  • Georgeff M (1983) Communication and interaction in multi-agent planning. In: Genesereth MR (ed) Proceedings of the national conference on artificial intelligence, Washington, D.C., 22–26 August 1983. AAAI Press, pp 125–129

    Google Scholar 

  • Gergonne JD (1815) Application de la méthode des moindres quarrés à l’interpolation des suites. Annales de Mathématiques Pures et Appliquées 6:242–252

    MathSciNet  Google Scholar 

  • Gergonne JD (1816a) Théorie de la règle de trois. Annales de Mathématiques Pures et Appliquées 7:117–122

    MathSciNet  Google Scholar 

  • Gergonne JD (1816b) Variétés. Essai de dialectique rationnelle. Annales de Mathématiques Pures et Appliquées 7:189–228

    MathSciNet  Google Scholar 

  • Giard L (1972) La "dialectique rationnelle" de Gergonne. Revue d’Histoire des Sciences 25(2):97–124

    Article  MATH  Google Scholar 

  • Gillon BS (ed) (2010) Logic in earliest classical India. Motilal Banarsidass Publishers Private Limited, Delhi, papers of the 12th World sanskrit conference, vol 10.2

    Google Scholar 

  • Giralt G, Sobek RP, Chatila R (1979) A multi-level planning and navigation system for a mobile robot: a first approach to HILARE. In: Buchanan BG (ed) Proceedings of the 6th international joint conference on artificial intelligence (IJCAI’79), Tokyo, 20–23 August 1979. William Kaufmann, pp 335–337

    Google Scholar 

  • Gochet P, Grégoire E, Gribomont P, Hulin G, Pirotte A, Roelants D, Snyers D, Thayse A, MVauclair, Wolper P (1988 and 1989) From standard logic to logic programming: introducing a logic based approach to artificial intelligence and From modal logic to deductive databases: introducing a logic based approach to artificial intelligence. Wiley, New York

    Google Scholar 

  • Gödel K (1995) Collected works Vol. 3. Unpublished Essays and lectures. Oxford University Press, Oxford, edited by S. Feferman, W. Goldfarb, J.W. Dawson Jr, Ch. Parsons, R.M. Solovay

    Google Scholar 

  • Gombocz WL (1990) Apuleius is better still: a correction to the square of opposition. Mnemosyne XLIII(1–2):124–131

    Article  Google Scholar 

  • Good IJ (1961) A causal calculus I. Br J Philos Sci 11:305–318

    Article  MathSciNet  Google Scholar 

  • Good IJ (1962a) A causal calculus II. Br J Philos Sci 12:43–51

    MathSciNet  Google Scholar 

  • Good IJ (1962b) Subjective probability as the measure of a non-measurable set. In: Nagel E, Suppes P, Tarski A (eds) Logic, methodology, and philosophy of science. Stanford University Press, Stanford, pp 319–329

    Google Scholar 

  • Good IJ (1965) Speculations concerning the first ultra intelligent machine. In: Alt FL, Rubinoff M (eds) Advances in computers, vol 6. Academic, London, pp 31–88

    Google Scholar 

  • Green CC (1979) Theorem proving by resolution as a basis for question answering systems. In: Meltzer B, Michie D (eds) Machine intelligence, vol 4. Edinburgh University Press, Edinburgh, pp 183–205

    Google Scholar 

  • Grice P (1957) Meaning. Philos Rev 66:377–388

    Article  Google Scholar 

  • Grimson WEL, Patil RS (eds) (1987) AI in the 1980s and beyond. A MIT survey. MIT Press, Cambridge

    Google Scholar 

  • Grize JB (1982) De la Logique à l’Argumentation. Librairie Droz, Genève

    Google Scholar 

  • Günther G (1957) Das Bewusstsein der Maschinen. Eine Metaphysik der Kybernetik, 1. Aufl. 1957, 2. Aufl. 1963, 3. Aufl. 2002. Agis Verlag, Krefeld, Baden, French translate La Conscience des Machines - Une Métaphysique de la Cybernétique followed by Cognition et Volition, 2008

    Google Scholar 

  • Guo Z (2017) Pensée Chinoise et Raison Grecque. Editions Universitaires de Dijon

    Google Scholar 

  • Haavelmo T (1943) The statistical implications of a system of simultaneous equations. Econometrica 11(1–2):1–12, reprinted in D.F. Hendry and M.S. Morgan (eds) The foundations of econometric analysis. Cambridge University Press, Cambridge, pp 477–490, 1995

    Google Scholar 

  • Hamilton W (1859–1860) Lectures on metaphysics and logic, vol 4. William Blackwood and Sons, Edinburgh

    Google Scholar 

  • Hansen C (Chen Han Sheng) (1983) Language and logic in ancient China. University of Michigan Press, Michigan Studies on China, Ann Arbor

    Google Scholar 

  • Harrison H, Minsky M (1992) The turing option. Viking

    Google Scholar 

  • Harsanyi JC (1967) Games with incomplete information played by “Bayesian” players, I–III. Part I. The basic model. Manag Sci (Theory Series) 14(3):159–182

    Google Scholar 

  • Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107

    Article  Google Scholar 

  • Hayes JE, Michie D, Mikulich LJ (eds) (1979) Machine intelligence 9. Ellis Horwood Ltd. and Wiley, New York

    Google Scholar 

  • Hebb DO (1949) The organization of behaviour. Wiley, New York

    Google Scholar 

  • Hempel CG (1965) Studies in the logic of confirmation. Aspects of scientific explanation and other essays in the philosophy of science, pp 3–46

    Google Scholar 

  • Hendler J (2008) Avoiding another AI winter. IEEE Intell Syst 23(2):2–4

    Article  Google Scholar 

  • Herbrand J (1968) Écrits Logiques. Presses Universitaires de France, Logical writings edited by W.D. Goldfarb, translation of the Écrits logiques edited by J. van Heijenoort, Harvard University Press, Cambridge, 1971

    Google Scholar 

  • Hewitt C (1969) PLANNER: a language for proving theorems in robots. In: Walker DE, Norton LM (eds) Proceedings of the 1st international joint conference on artificial intelligence, Washington, DC, May 1969, pp 295–302

    Google Scholar 

  • Hewitt C (2009) Middle history of logic programming: resolution, planner. Edinburgh LCF, Prolog, Simula, and the Japanese fifth generation project. CoRR arXiv:0904.3036v25

  • Heyting A (1956) Intuitionism: an introduction. North-Holland Publishing Co., Amsterdam

    MATH  Google Scholar 

  • Hintikka J (1962) Knowledge and belief: an introduction to the logic of the two notions. Cornell University Press, Ithaca

    Google Scholar 

  • Hobbes of Malmesbury T (1651) Leviathan, or the matter, forme and power of a common-wealth ecclesiasticall and civil. Basil Blackwell, Oxford, 1955

    Google Scholar 

  • Hobbes of Malmesbury T (1655) Elementa Philosophiae I. De Corpore. Vrin, Paris, Bibliothèque des Textes Philosophiques, 2000, English translate Elements of philosophy, the first section, concerning body, 1656; The English works of Thomas Hobbes of Malmesbury edited by W. Molesworth, Vol. 1: elements of philosophy, parts I–IV, The first section concerning body, John Bohn, London 1839; the quoted text is in Part First, Computation or Logic, chap. 1 of Philosophy

    Google Scholar 

  • Hodges W (2018) Two early Arabic applications of model-theoretic consequence. Log Univ 12(1–2):37–54

    Article  MathSciNet  MATH  Google Scholar 

  • Homer (1984) The iliad. Oxford Paperbacks

    Google Scholar 

  • Hubien H (1977) Logiciens médiévaux et logique d’aujourd’hui. Revue Philosophique de Louvain 75(26):219–233

    Article  Google Scholar 

  • Hughes G (1982) John Buridan on self-reference: chapter eight of Buridan’s Sophismata. An edition and translation with an introduction, and philosophical commentary. Cambridge University Press, London

    Google Scholar 

  • Hume D (1748) An enquiry concerning human understanding. Oxford world’s classics, 2008

    Google Scholar 

  • Hünefeldt T, Brunetti R (2004) Artificial intelligence as “theoretical psychology”: Christopher Longuet–Higgins’ contribution to cognitive science. Cogn Process 5(3):137–139

    Article  Google Scholar 

  • Jaynes ET (1957) Information theory and statistical mechanics I & II. Phys Rev 106(4):620–630 & 108(2):171–190

    Google Scholar 

  • Jeavons WS (1869) The substitution of similars, the true principle of reasoning, Derived from a Modification of Aristotle’s Dictum. Macmillan & Co

    Google Scholar 

  • Jeavons WS (1870) Elementary lessons in logic: deductive and inductive, with copious questions and examples, and a vocabulary of logical terms. Macmillan & Co, reprinted by Elibron Classics

    Google Scholar 

  • Johnson-Laird PN (1978) What’s wrong with Grandma’s guide to procedural semantics: a reply to Jerry Fodor. Cognition pp 249–261

    Google Scholar 

  • Jones RB (ed) (2012) The Organon: the works of Aristotle on logic. CreateSpace independent publishing platform, includes six works on logic: the categories; On interpretation; The prior analytics; The posterior analytics; The topics; The sophistical refutations

    Google Scholar 

  • Kalinowski G (1982) La logique juridique et son histoire. Archives de Philosophie du Droit 27:275–289, republ. in Anuario Filosófico, vol 16, pp 331–350, 1983

    Google Scholar 

  • Keynes JM (1921) A treatise on probability. Macmillan & Co., London

    MATH  Google Scholar 

  • Keynes JN (1900) Studies and exercises in formal logic, including a generalization of logical processes in their application to complex inferences. Macmillan & Co., London

    Google Scholar 

  • Kleene SC (1952) Introduction to metamathematics. North Holland, Amsterdam

    Google Scholar 

  • Kleene SC (1956) Representation of events in nerve nets. In: Shannon CE, McCarthy J (eds) Automata studies. Princeton University Press, Princeton, pp 3–40. 1st version: Representation of events in nerve nets and finite automata, U.S. Air Force, Project RAND, Research Memorandum 704, 98 p, 15 December 1951

    Google Scholar 

  • Kripke S (1959) A completeness theorem in modal logic. J Symb Log 24(1):1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Kripke S (1963) Semantical considerations on modal logic. Acta Philos Fenn 16:83–94

    MathSciNet  MATH  Google Scholar 

  • Kullback S, Leibler R (1951) On information and sufficiency. Ann Math Stat 22:79–86

    Article  MathSciNet  MATH  Google Scholar 

  • Kurzweil R (1990) The age of intelligent machines. MIT, Cambridge

    Google Scholar 

  • La Mettrie (Offray de) J (1747) Man a machine and man a plant. Hackett Publishing Company, 1994, also author of L’Homme plus que Machine (1748) (republished by Rivages, Payot, 2004) and of Les Animaux plus que Machines (1750)

    Google Scholar 

  • Ladd C (1883) On the algebra of logic. In: Peirce CS (ed) Studies in logic by members of the Johns Hopkins University, Little, Brown, and Company, Baltimore, pp 17–71

    Google Scholar 

  • Lambert JH (1764) Neues Organon oder Gedanken über die Erforschung und Bezeichnung des Wahren und dessen Unterscheidung vom Irrthum und Schein. Reprinted in Philosophische Schriften. Volume II, Georg Olms Verlagsbuchhandlung, Hildesheim, 1965; and by Akademie Verlag Berlin, 1990

    Google Scholar 

  • Lambert of Auxerre (2015) Logica, or Summa Lamberti. University of Notre Dame Press, translated, with introduction and notes, by Th. S. Maloney

    Google Scholar 

  • Langius IC (1714) Inventvm Novvm Quadrati Logici Vniversalis [...]. Gissa Hassorum: Henningius Mllerus

    Google Scholar 

  • Lapicque L (1943) La Machine Nerveuse. Flammarion, Paris

    Google Scholar 

  • Laplace PS (1814) Essai Philosophique sur les Probabilités. Madame Veuve Courcier, Paris, republ. by Christian Bourgois, 1986; English translate A Philosophical Essay on Probabilities, Dover Publications, New York, 1951

    Google Scholar 

  • Largeault J (1972) Logique Mathématique. Textes. Collection U, Armand Colin, Paris, texts by J. Lukasiewicz, E. Post, E.W. Beth, Th. Skolem, L. Löwenheim, K. Gödel, L. Henkin, D. Hilbert

    Google Scholar 

  • Leibniz GW (1703) Explication de l’arithmétique binaire, qui se sert des seuls caractères 0 & 1; avec des Remarques sur son utilité, & sur ce qu’elle donne le sens des anciennes figures Chinoises de Fohy. Compte Rendu de l’Académie des Sciences (Paris), Mémoires pp 85–89, English translation by L. Strickland available online: Explanation of binary arithmetic, which uses only the characters 0 and 1, with some remarks on its usefulness, and on the light it throws on the ancient Chinese figures of Fuxi

    Google Scholar 

  • Lemanski J (2017) Periods in the use of Euler-type diagrams. Acta Baltica Historiae et Philosophiae Scientiarum 5(1):50–69

    Article  Google Scholar 

  • Lemanski J (2018) Logic diagrams in the Weigel and Weise circles. Hist Philos Log 39(1):3–28

    Article  MathSciNet  MATH  Google Scholar 

  • Lenzen W (2016) Leibniz’s logic and the “cube of opposition”. Log Univ 10(2):171–189

    Article  MathSciNet  MATH  Google Scholar 

  • Leśniewski S (1992) Collected works. In: Surma SJ, Srzednicki JT, Barnett DI, Rickey VF (eds) Nijhoff international philosophy series, vol I, II. Kluwer, Dordrecht

    Google Scholar 

  • Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proc IRE 47(11):1940–1951

    Article  Google Scholar 

  • Lewis D (1973) Counterfactuals and comparative possibility. J Philos Log 2(4):418–446

    Article  MathSciNet  MATH  Google Scholar 

  • Lighthill J (1973) Artificial intelligence: a paper symposium. Science Research Council, UK, contents: Part I: Artificial intelligence: a general survey (Sir James Lighthill) Part II: Some comments on the Lighthill report and on artificial intelligence (N.S. Sutherland), Part III: Comments on the Lighthill report and the Sutherland reply, par R.M. Needham, H.C. Longuet-Higgins, et par D. Michie

    Google Scholar 

  • Lindsay RK (1963) Inferential memory as the basis of machines which understand natural language. In: Feigenbaum EA, Feldman J (eds) Computers and thought. McGraw-Hill, New York, pp 217–233

    Google Scholar 

  • Lindsay RK, Buchanan BG, Feigenbaum EA, Lederberg J (1980) Applications of artificial intelligence for organic chemistry: the DENDRAL project. McGraw-Hill, New York

    Google Scholar 

  • Link D (2012) Programming ENTER: Christopher Strachey’s draughts program. Computer resurrection. Bull Comput Conserv Soc 60(3):23–31

    Google Scholar 

  • Locke J (1690) An essay concerning human understanding. Penguin Classics, 1998

    Google Scholar 

  • Londey D, Johanson C (1984) Apuleius and the square of opposition. Phronesis 29(2):165–173. Correction, Phronesis 30:209 (1985)

    Google Scholar 

  • Londey D, Johanson C (1987) The Logic of Apuleius, including a complete Latin text and English translation of the Peri Hermeneias of Apuleius of Madaura. E.J. Brill, Leiden & New York, Philosophia Antiqua series, v. 47

    Google Scholar 

  • Łukasiewicz J (1913) Die Logischen Grundlagen der Wahrscheinlichkeitsrechnung. In: Borkowski L (ed) Jan Łukasiewicz - Selected works. North-Holland, Amsterdam. Polish Scientific Publishers, Warsaw, 1970. Logical foundations of probability theory, English translation, pp 16–63

    Google Scholar 

  • Łukasiewicz J (1930) Philosophical remarks on many-valued systems of propositional logic. In: Borkowski L (ed) Jan Łukasiewicz - Selected works, North-Holland, Amsterdam. Polish Scientific Publishers, Warsaw, 1970, pp 153–179

    Google Scholar 

  • Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man-Mach Stud 7(1):1–13

    Article  MATH  Google Scholar 

  • Marinetti FT (1909) Poupées Électriques, drame en trois actes, avec une Préface sur le Futurisme. E. Sansot & Cie, Paris

    Google Scholar 

  • Mariotte E (1678) Essai de Logique, contenant les principes des sciences, et la manière de s’en servir pour faire de bons raisonnements. Reprinted by Fayard, Paris, 1992, followed by Les principes du devoir et des connaissances humaines, attributed to Roberval

    Google Scholar 

  • Marquis P, Papini O, Prade H (2014) Some elements for a prehistory of artificial intelligence in the last four centuries. In: Schaub T, Friedrich G, O’Sullivan B (eds) Proceedigns of the 21st European conference on artificial intelligence (ECAI’14), 18–22 August, Prague. Frontiers in artificial intelligence and applications, vol 263. IOS Press, Amsterdam, pp 609–614

    Google Scholar 

  • Marr D (1982) Vision. W.H. Freeman and Co., San Francisco, réd. MIT Press, Cambridge, 2010. Foreword: S. Ullman; Afterword: T. Poggio

    Google Scholar 

  • Martin T (2006a) La logique probabiliste de Gabriel Cramer. Math Sci Hum \(44^e\) année(4):43–60

    Google Scholar 

  • Martin T (2006b) Logique du probable de Jacques Bernoulli à J.-H. Lambert. Journ@l électronique d’Histoire des Probabilités et des Statistiques 2(1b)

    Google Scholar 

  • Martin T (2011) J.-H. Lambert’s theory of probable syllogisms. Int J Approx Reason 52:144–152

    Article  MathSciNet  MATH  Google Scholar 

  • Mavrodes GI (1963) Some puzzles concerning omnipotence. Philos Rev 72:221–223

    Article  Google Scholar 

  • McCarthy J (1990) In: Lifschitz V (ed) Formalizing common sense: papers by John McCarthy. Intellect Books

    Google Scholar 

  • McCarthy J (1996) Defending AI research: a collection of essays and reviews. CSLI Publications, Stanford

    Google Scholar 

  • McCarthy J, Hayes P (1979) Some philosophical problems from the standpoint of artificial intelligence. In: Meltzer B, Michie D (eds) Machine intelligence, vol 4. Edinburgh University Press, Edinburgh, pp 463–502

    Google Scholar 

  • McCarthy J, Abrahams PW, Edwards DJ, Hart TP, Levin MI (1962) LISP 1.5 programmer’s manual, 2nd edn. MIT Press, Cambridge, 1985. The Computation Center And Research Laboratory of Electronics

    Google Scholar 

  • McCarthy J, Minsky M, Rochester N, Shannon CE (2006) A proposal for the Dartmouth summer research project on artificial intelligence, August 31, 1955. AI Mag 27(4):12–14

    Google Scholar 

  • McCorduck P (1979) Machines who think. A personal inquiry into the history and prospects of artificial intelligence. W.H. Freeman and Company, San Francisco

    Google Scholar 

  • McCulloch WS, Pitts W (1943) A logical calculus of ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Article  MathSciNet  MATH  Google Scholar 

  • Meltzer B, Michie D (eds) (1968–1972) Machine intelligence 3–7. American Elsevier Publishing Company, New York

    Google Scholar 

  • Menger K (1942) Statistical metrics. Proc Nat Acad Sci USA 28:535–537

    Article  MathSciNet  MATH  Google Scholar 

  • Mérimée P (1837) La Vénus d’Ille. Emile Colin et Cie, English translated by Venus of Ille and other stories. Oxford library of French classics. Oxford University Press, Oxford, 1966

    Google Scholar 

  • Meusnier N, Piron S (2007) Medieval probabilities: a reappraisal. In: Journ@l électronique d’Histoire des Probabilités et des Statistiques 3(1)

    Google Scholar 

  • Meyrink G (1915) Der Golem. English translated by The Golem. European Classics Paperback, Dedalus Ltd., 1985

    Google Scholar 

  • Michie D (1963) Experiments on the mechanization of game-learning. Part I. Characterization of the model and its parameters. Comput J 6(3):232–236

    Google Scholar 

  • Minsky M (1954) Theory of neural-analog reinforcement systems and its application to the brain-model problem. Typewritten ms., dated 1953; PhD thesis, Princeton University

    Google Scholar 

  • Minsky M (1975) Minsky’s frame system theory. In: Proceedings of the 1975 workshop on theoretical issues in natural language processing (TINLAP ’75), Association for computational linguistics, pp 104–116, the article originally appeared without any author name

    Google Scholar 

  • Minsky M (1986) The society of mind. Simon & Schuster, Inc

    Google Scholar 

  • Minsky M, Papert S (1969) Perceptrons: an introduction to computational geometry, 2nd edn. The MIT Press, Cambridge, revised 1972

    Google Scholar 

  • Minsky M, Selfridge OG (1961) Learning in random nets. In: Proceedings of the 4th London symposium on information theory, Butterworth Ltd., London, pp 335–347

    Google Scholar 

  • Mitchell OH (1883) On a new algebra of logic. In: Peirce CS (ed) Studies in logic by members of the Johns Hopkins University, Little, Brown and Company, Baltimore, pp 72–106

    Google Scholar 

  • Moisil G (1972) La logique des concepts nuancés. In: Essais sur les Logiques Non Chrysippiennes, Editions Acad. Repub. Soc. Roum., Bucharest, pp 157–163

    Google Scholar 

  • Moore J, Newell A (1974) How can Merlin understand? In: Gregg L (ed) Knowledge and cognition. Erlbaum, Hillsdale, pp 201–252

    Google Scholar 

  • Moravec HP (1982) The CMU rover. In: Waltz DL (ed) Proceedings of the national conference on artificial intelligence. Pittsburgh, 18–20 August. AAAI Press, pp 377–380

    Google Scholar 

  • More T (1962) Relations between implicational calculi. Technical report. MIT, Cambridge. PhD Dissertation, May

    Google Scholar 

  • Moretti A (2014) Was Lewis Carroll an amazing oppositional geometer? Hist Philos Log 35(4):383–409

    Article  MathSciNet  MATH  Google Scholar 

  • Nagel E, Newman JR (1958) Gödel’s proof. New York University Press, New York

    Google Scholar 

  • Nash J (1951) Non-cooperative games. Ann Math (2nd Series) 54:286–295

    Google Scholar 

  • Nevatia R, Binford TO (1977) Description and recognition of curved objects. Artif Intell 8(1):77–98

    Article  MATH  Google Scholar 

  • Newell A (1981) The heuristic of George Polya and its relation to artificial intelligence. Technical report, Computer Science Department, Carnegie Mellon University, Paper 2413

    Google Scholar 

  • Newell A, Simon HA (1956) The logic theory machine. A complex information processing system. The Rand Corporation, Santa Monica, CA, report P-868, 15 June 1956; Proceedings of the IRE Transactions on Information Theory (IT-2), September 1956, pp 61–79

    Google Scholar 

  • Newell A, Simon HA (1972) Human problem solving, 1st edn. Prentice-Hall, Englewood Cliffs. 1st print. 920 pp; 2nd print. 784 pp

    Google Scholar 

  • Newell A, Shaw JC, Simon HA (1957) Empirical explorations of the logic theory machine. A case study in heuristic. In: Proceedings of the Western joint computer conference, pp 218–239

    Google Scholar 

  • Newell A, Shaw JC, Simon HA (1959) Report on a general problem-solving program. In: Proceedings of the international conference on information processing, pp 256–264

    Google Scholar 

  • Nilsson NJ (2010) The quest for artificial intelligence: a history of ideas and achievements. University Press, Cambridge

    Google Scholar 

  • Ovid (1998) Metamorphoses. Oxford Paperbacks

    Google Scholar 

  • Papert S (1980) Mindstorms: children, computers, and powerful ideas. Prentice Hall/Harvester

    Google Scholar 

  • Pareto V (1961) On logical and non-logical action. In: Parsons T, Shils E, Naegele KD, Pitts JR (eds) Theories of society. Foundations of modern sociological theory, vol II. The Free Press of Glencoe, Inc., pp 1061–1063

    Google Scholar 

  • Parsons T (2017) The traditional square of opposition. In: Zalta EN (ed) The Stanford encyclopedia of philosophy, Metaphysics Research Lab, Stanford University

    Google Scholar 

  • Peirce CS (1870) Description of a notation for the logic of relatives, resulting from an amplification of the conceptions of Boole’s calculus of logic. Memoirs of the American academy of arts and sciences 9:317–378, reprinted in Collected Papers, vol 3, pp 45–149

    Google Scholar 

  • Peirce CS (1880) On the algebra of logic. Am J Math 3:15–57, reprinted in Collected Papers, vol 3, pp 154–251, 1960

    Google Scholar 

  • Peirce CS (1885) On the algebra of logic: a contribution to the philosophy of notation. Am J Math 7(2):180–202, reprinted in Collected Papers, vol 3, pp 359–403, 1960

    Google Scholar 

  • Peirce CS (1931) Collected papers of Charles Sanders Peirce. Harvard University Press, Cambridge. Publication 1931–1935, 1958

    Google Scholar 

  • Peirce CS (1955) Philosophical writings. Selected and edited, with an introduction by J. Buchler, Dover Publications

    Google Scholar 

  • Peter of Spain (2014) Summaries of logic [Tractatus]. Oxford University Press, New York, translated with introduction and notes by B.P. Copenhaver, C.G. Normore and T. Parsons

    Google Scholar 

  • Petronius (1969) The Satyricon & the fragments. Penguin Books

    Google Scholar 

  • Piaget J (1949) Traité de Logique. Essai de Logistique Opératoire. Armand Colin, Paris, 2nd revised ed.: Essai de logique opératoire, in collaboration with Jean-Blaise Grize, Dunod, Paris, 1972

    Google Scholar 

  • Pitrat J (1970) Un programme de démonstration de théorèmes. Dunod, Paris

    MATH  Google Scholar 

  • Pitrat J (1977) A chess combination program which uses plans. Artif Intell 8(3):275–321

    Article  Google Scholar 

  • Pitrat J (2000) Métaconnaissance : Futur de l’Intelligence Artificielle. Hermes Science Publications

    Google Scholar 

  • Ploucquet G (2006) Logik. Georg Olms, Hildesheim, herausgegeben, übersetzt und mit einer Einleitung versehen von M. Franz

    Google Scholar 

  • Poe EA (1836) Maelzel’s chess player. Southern Literary Messenger, Richmond

    Google Scholar 

  • Polya G (1945) How to solve it, 2nd edn. Princeton University Press, Princeton, 1957

    Google Scholar 

  • Polya G (1954) Mathematics and plausible reasoning, 2nd edn. Vol. 1: Induction and analogy in mathematics. Vol. 2: Patterns of plausible inference. Princeton University Press, Princeton, 1968

    Google Scholar 

  • Pratt V (1987) Thinking machines: the evolution of artificial intelligence. Basil Blackwell Ltd., Oxford and New York

    Google Scholar 

  • Pratt-Hartmann I (2011) The Hamiltonian syllogistic. J Log Lang Inf 20(4):445–474

    Article  MathSciNet  MATH  Google Scholar 

  • Quine WVO (1941) Elementary logic, 2nd edn. Harper & Row, New York, 1965

    Google Scholar 

  • Rahman S, Redmond J (2007) Hugh MacColl. An overview of his logical work with anthology. College Publications

    Google Scholar 

  • Ramsey FP (1931) Foundations - essays in philosophy, logic, mathematics and economics. Ed. by D.H. Mellor, republ. by Humanities Press, 1978

    Google Scholar 

  • Raphael B (1976) The thinking computer: mind inside matter. W.H. Freeman and Co., San Francisco

    MATH  Google Scholar 

  • Ratliff TC (2010) Lewis Carroll, voting, and the taxicab metric. Coll Math J 41:303–311

    Article  MathSciNet  MATH  Google Scholar 

  • Read S (2010) Thomas Bradwardine, “Insolubilia”. Dallas Medieval Texts and Translations, 10, Peeters Editions, Leuven, Latin text and English translation

    Google Scholar 

  • Read S (2012) John Buridan’s theory of consequence and his octagons of opposition. In: Béziau J, Jacquette D (eds) Around and beyond the square of opposition. Studies in universal logic. Springer, Basel, pp 93–110

    Chapter  MATH  Google Scholar 

  • Rescher N (1963) Studies in the history of Arabic logic. University of Pittsburgh Press, Pittsburgh

    Google Scholar 

  • Rescher N (1964) The development of Arabic logic. University of Pittsburgh Press, Pittsburgh

    MATH  Google Scholar 

  • Rescher N (1967) Temporal modalities in Arabic logic. Foundations of language, supplementary series. D. Reidel Publishing Company, Dordrecht

    Google Scholar 

  • Rescher N (1976) Plausible reasoning. Van Gorcum, Amsterdam

    Google Scholar 

  • Robida A (1883) Le Vingtième Siècle. Georges Decaux, Paris, illustrated by the author; English transl The twentieth century. Wesleyan University Press, Early classics of science fiction, 2004

    Google Scholar 

  • Robinson JA (1965) A machine-oriented logic based on the resolution principle. J ACM 12(1):23–41

    Article  MathSciNet  MATH  Google Scholar 

  • Rochester N, Holland JH, Haibt LH, Duda WL (1956) Tests on a cell assembly theory of the action of the brain using a large digital computer. IRE Trans Inf Theory IT-2:80–93

    Google Scholar 

  • Rose F (1984) Into the heart of the mind: an American quest for artificial intelligence. Harper & Row

    Google Scholar 

  • Rosenblatt F (1962) Principles of neurodynamics: perceptrons and the theory of brain mechanisms. Spartan Books

    Google Scholar 

  • Rosenblueth A, Wiener N, Bigelow J (1943) Behavior, purpose and teleology. Philos Sci 10(1):18–24

    Article  Google Scholar 

  • Roussel R (1914) Locus Solus. Alphonse Lemerre, English translation Locus Solus by R.C. Cunningham, New Directions Publishing Corporation, 2017

    Google Scholar 

  • Russell B (1956) Logic and knowledge. Essays 1901–1950. George Allen & Unwin Ltd., London & Macmillan, New York, edited by R.C. Marsh

    Google Scholar 

  • Sacerdoti ED (1977) Structure for plans and behaviour. Elsevier, Amsterdam

    Google Scholar 

  • Samuel A (1959) Some studies in machine learning using the game of checkers. IBM J 3(3):210–229, some studies in machine learning using the game of checkers. II. Recent progress. IBM J 11(6):601–617, 1967

    Google Scholar 

  • Sarukkai S (ed) (2018) Handbook of logical thought in India. Springer, Berlin. Contents: Buddhist logic: sample texts (P.P. Gokhale); Convergence and divergence of Nyāya and Tattvavāda (Dvaita) theories of logic (V. Nishanka); Dependency of inference on perception and verbal testimony (P Vinay); Early Nyāya logic: rhetorical aspects (K. Lloyd); General introduction to Buddhist logic (J. Tuske); General introduction to logic in Jainism with a list of logicians and their texts (J. Soni); Introduction to Buddhist logicians and their texts (M. Chattopadhyay); Later Nyāya logic: computational aspects (A. Kulkarni); Logic in Tamil didactic literature (T. Jayaraman); Logic of Syād-Vāda (A. Clavel); Logical argument in Vidyānandins Satya-śāsana-parīkşā (H. Trikha) Some issues in Buddhist logic (P.P. Gokhale, K. Bhattacharya) The logic of late Nyāya: a property-theoretic framework for a formal reconstruction (E. Guhe); The logic of late Nyāya: problems and issues (E. Guhe); The opponent: jain logicians reacting to Dharmakīrtis theory of inference (M.-H. Gorisse)

    Google Scholar 

  • Savage LJ (1954) The foundations of statistics. Wiley, New York. 2nd revised edition, 1972

    Google Scholar 

  • Schank R (1973) Identification of conceptualizations underlying natural language. In: Schank R, Colby K (eds) Computer models of thought and language. W.H. Freeman and Co., San Francisco, pp 187–247

    MATH  Google Scholar 

  • Schank R, Abelson RP (1977) Scripts, plans, goals and understanding: an inquiry into human knowledge structures. Erlbaum

    Google Scholar 

  • Schröder E (1890) Vorlesungen über die Algebra der Logik, 3 vols. B.G. Teubner, Leipzig. Publication 1890–1905, republ. by Chelsea, 1966; Thoemmes Press, 2000

    Google Scholar 

  • Schumann A (2012) Studies in Talmudic logic. Vol 6: Talmudic logic. College Publications

    Google Scholar 

  • Schumann A (ed) (2017) Studies in Talmudic logic. Vol. 14: Philosophy and history of Talmudic logic. College Publications

    Google Scholar 

  • Selfridge O (1955) Pattern recognition and modern computers. In: Proceedings of the Western joint computer conference, 1–3 March 1955. Institute of Radio Engineers, New York, pp 91–93

    Google Scholar 

  • Selfridge OG (1959) Pandemonium: a paradigm for learning. In: Blake DV, Uttley AM (eds) Symposium on mechanisation of thought processes, London, 24–27 November 1958, pp 511–529

    Google Scholar 

  • Sesmat A (1951) Logique. I: Les Définitions. Les Jugements. Logique II: Les Raisonnements, la Logistique. Hermann, 2 vols. 1950–1951, Paris

    Google Scholar 

  • Shackle GLS (1949) Expectation in economics. Cambridge University Press, Cambridge

    Google Scholar 

  • Shackle GLS (1961) Decision, order and time in human affairs, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Shafer G (1978) Non-additive probabilities in the work of Bernoulli and Lambert. Arch Hist Exact Sci 19(4):309–370

    Article  MathSciNet  MATH  Google Scholar 

  • Shafer G (2018) Marie-France Bru and Bernard Bru on dice games and contracts. Statistical Science To appear

    Google Scholar 

  • Shannon CE (1938) A symbolic analysis of relay and switching circuits. Trans AIEE 57(12):713–723, the master thesis of the author, with the same title, is from 1937

    Google Scholar 

  • Shannon CE (1950) Programming a computer for playing chess. Philos Mag (7th Series) XLI(314):256–275, presented at the National Institute of Radio Engineers Convention, 9 March 1949, New York

    Google Scholar 

  • Shannon CE (1956) A chess-playing machine. In: Newman JR (ed) The world of mathematics - a small library of the literature of mathematics from A’H-Mose the scribe to Albert Einstein (4 Vols), vol 4. Simon & Schuster, New York, pp 2124–2135. In: Part XIX: Mathematical machines: can a machine think?

    Google Scholar 

  • Shelley MW (1818) Frankenstein: or the modern prometheus. Oxford Paperbacks, 1980

    Google Scholar 

  • Sherwood W (1966) William of Sherwood’s introduction to logic. University of Minnesota Press, Minneapolis, with translation, introduction and notes by N. Kretzmann

    Google Scholar 

  • Shin SJ, Lemon O (2008) Diagrams. In: Zalta EN (ed) The Stanford encyclopedia of philosophy (Winter 2008 Edition)

    Google Scholar 

  • Slagle JR (1963) A heuristic program that solves symbolic integration problems in freshman calculus. In: Feigenbaum EA, Feldman J (eds) Computers and thought, McGraw-Hill, New York, pp 191–203

    Google Scholar 

  • Smalbrugge MA (1986) L’argumentation probabiliste d’Augustin dans le Contra Academicos. Revue des Études Augustiniennes XXXII:41–55

    Google Scholar 

  • Smith RG (1984) On the development of commercial expert systems. AI Mag Fall:61–73

    Google Scholar 

  • Sobel JH (2004) Logic and theism: arguments for and against beliefs in god. Cambridge University Press, Cambridge

    Google Scholar 

  • Solomonoff RJ (1956) An inductive inference machine. Technical report, Technical Research Group, New York City, 61 p. http://world.std.com/~rjs/indinf56.pdf. Revised version published later as A formal theory of inductive inference, Information and Control, vol 7, pp 1–22 and 224–254, 1964

  • Sousa Silvestre R (2015) On the logical formalization of Anselm’s ontological argument. Revista Brasileira de Filosofia da Religiã o 2(2):142–161

    Google Scholar 

  • Spade PV (1979) Roger Swyneshed’s Insolubilia: Edition and Comments. Archives d’Histoire Doctrinale et Littéraire du Moyen Âge 46:177–220

    Google Scholar 

  • Spade PV, Read S (2018) Insolubles. In: Zalta E (ed) The Stanford encyclopedia of philosophy, Metaphysics Research Lab, Stanford University

    Google Scholar 

  • Strachey CS (1952) Logical or non-mathematical programmes. In: Proceedings of the 1952 ACM national meeting, Toronto, 8–10 September 1952, pp 46–49

    Google Scholar 

  • Stuart Mill J (1843) A system of logic, ratiocinative and inductive, being a connected view of the principles of evidence and the methods of scientific investigation. John W. Parker, London. 2 vols.: XVI \(+\) 580, XII \(+\) 624 pp; republished by University of Toronto Press, Routledge & Kegan Paul, 1974

    Google Scholar 

  • Stuart Mill J (1863) Utilitarianism. Parker, Son, and Bourn, London

    Google Scholar 

  • Suszko R (1968) Non-fregean logic and theories. Acta Log (Annals of the University of Bucarest) 11:105–125

    MathSciNet  MATH  Google Scholar 

  • Swift J (1726) Gulliver’s travels. Worlds Classics, Oxford Paperbacks, 1987

    Google Scholar 

  • Takemura R (2013) Proof theory for reasoning with Euler diagrams. A logic translation and normalization. Stud Log 101(1):157–191

    Google Scholar 

  • Tarski A (1956) Logic, semantics, metamathematics. Papers from 1923 to 1938. Oxford University Press, Oxford, translated by J.H. Woodger

    Google Scholar 

  • Teixidor J (2003) Aristote en Syriaque. Paul le Perse, logicien du VIe siècle. CNRS Editions, Paris

    Google Scholar 

  • Thomas of Britain (1969) Tristan. Penguin Books, includes Tristan by Gottfried von Strassburg, with the surviving fragments of the Tristan of Thomas

    Google Scholar 

  • Thomson W (1842) Outline of the laws of thought. William Pickering, London

    Google Scholar 

  • Thomson W (1857) An outline of the necessary laws of thought: a treatise on pure and applied logic. Sheldon and Company, New York

    Google Scholar 

  • Toulmin SE (1958) The uses of argument, 2nd edn. Cambridge University Press, Cambridge, 2003

    Google Scholar 

  • Triolet E (1963) L’âme. Gallimard, Paris

    Google Scholar 

  • Turing A (1948) Intelligent machinery. Report National Physical Laboratory, London, 1948. Reprinted in: Machine intelligence, vol 5. Edinburgh University Press, Edinburgh, pp 3–23, 1969

    Google Scholar 

  • Turing A (1950) Computing machinery and intelligence. Mind 59:433–460

    Article  MathSciNet  Google Scholar 

  • Turing A (1956) Can a machine think? In: Newman JR (ed) The world of mathematics - a small library of the literature of mathematics from A’H-Mose the scribe to Albert Einstein (4 Vols), vol 4. Simon & Schuster, New York, pp 2099–2123. In: Part XIX: Mathematical machines: can a machine think?

    Google Scholar 

  • Uckelman SL (2017) Medieval logic. In: Malpass A, Marfori MA (eds) The history of philosophical and formal logic: from Aristotle to Tarski. Bloomsbury, London, pp 71–99

    Google Scholar 

  • Vaucanson J (1738) Le mécanisme du fluteur automate présenté à messieurs de l’Académie Royale des Sciences, avec la description d’un Canard Artificiel, mangeant, beuvant, digerant & se vuidant, épluchant ses aîles & ses plumes, imitant en diverses manières un Canard vivant, et aussi d’une autre figure également merveilleuse, jouant du Tambourin et de la Flute ... (24 p). Paris, English translated An account of the mechanism of an automaton, or image playing on the German-flute: as it was presented in a memoire, to the gentlemen of the royal academy of sciences at Paris. Together with a description of an artificial duck, Gale ECCO, Print Editions, 2010

    Google Scholar 

  • Venn J (1866) The logic of chance. Macmillan, London and Cambridge, revised, 1888; reprinted by Dover, New York, 2006

    Google Scholar 

  • Venn J (1880) On the diagrammatic and mechanical representation of propositions and reasonings. Lond Edinb Dublin Philos Mag J Sci 10(58):1–18

    Google Scholar 

  • Venn J (1881) Symb Log. Macmillan, London

    Book  Google Scholar 

  • Vigneron H (1914) Les automates. La Nature, Revue des Sciences et de leurs Applications aux Arts et à l’Industrie Quarante deuxième année (2142):56–61, 13 juin

    Google Scholar 

  • von Neumann J (1956) The general and logical theory of automata. In: Newman JR (ed) The world of mathematics - a small library of the literature of mathematics from A’H-Mose the scribe to Albert Einstein (4 Vols), vol 4. Simon & Schuster, New York, pp 2070–2098. In: Part XIX: Mathematical machines: can a machine think?

    Google Scholar 

  • von Neumann J (1958) The computer and the brain. Yale University Press, New Haven

    Google Scholar 

  • von Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press, Urbana, edited and completed by A.W. Burks

    Google Scholar 

  • von Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton University Press, Princeton

    Google Scholar 

  • von Sigwart C (1873–1878) Logik. Laupp, Tübingen, English translation by H. Dendy: Logic. Volume 1. The judgment, concept, and inference. Volume 2. Logical methods, Swan Sonnenschein & Co., London, 1895

    Google Scholar 

  • von Wright G (1951) An essay in modal logic. North-Holland Publishing Co., Amsterdam

    MATH  Google Scholar 

  • Vuillemin J (1971) La Logique et le Monde Sensible. Flammarion, Paris

    Google Scholar 

  • Wade Savage C (1967) The paradox of the stone. Philos Rev 76(1):74–79

    Article  Google Scholar 

  • Waltz D (1975) Understanding line drawings of scenes with shadows. In: Winston PH (ed) The psychology of computer vision. McGraw-Hill, New York, pp 19–91

    Google Scholar 

  • Weizenbaum J (1966) Eliza - a computer program for the study of natural language communication between man and machine. Commun ACM 9(1):36–45

    Article  Google Scholar 

  • Whately R (1826) Elements of logic, comprising the substance of the article in the encyclopaedia metropolitana. J. Mawman, London

    Google Scholar 

  • Whitehead AN, Russell B (1910) Principia Mathematica, vol 3. Cambridge University Press, Cambridge. Publication 1910–1913; 2 éd. 1925–1927

    Google Scholar 

  • Wiener N (1949) Cybernetics or control and communication in the animal and the machine. Hermann/Wiley, Paris/New York

    Google Scholar 

  • Wiener N (1950) The human use of human beings. Cybernetics and society. Houghton Mifflin, Boston

    Google Scholar 

  • Wilks Y (1972) Grammar, meaning and the machine analysis of language. Routledge, London

    Google Scholar 

  • Winograd T (1971) Procedures as a representation for data in a computer program for understanding natural language. MIT AI Technical report 235

    Google Scholar 

  • Wittgenstein L (1921) Tractatus Logico-Philosophicus. Annalen der Naturphilosophie, introduction by B. Russell

    Google Scholar 

  • Wittgenstein L (1969) On Certainty. Basil Blackwell; Harper & Row Publisher, 1972

    Google Scholar 

  • Wolff Ch (1713) Vernünfftige Gedancken von den Kräfften des menschlichen Verstandes und ihrem richtigen Gebrauche in Erkäntni\(\beta \) der Wahrheit. French translation (by J. Deschamps, Berlin, 1736): Réflexion sur les forces de l’entendement humain et sur leur légitime usage dans la connaissance de la vérité, itself translated in English: Logic, or Rational Thoughts on the Powers of the Human Understanding, with their Use and Application in the Knowledge and Search of Truth (Gale Ecco, Print Editions 2010)

    Google Scholar 

  • Woods WA (1975) What’s in a link: foundations for semantic networks. In: Bobrow D, Collins A (eds) Representation and understanding: studies in cognitive science. Academic, New York, pp 35–82

    Chapter  Google Scholar 

  • Wright S (1921) Correlation and causation. J Agric Res 20:557–585

    Google Scholar 

  • Zadeh LA (1950) Thinking machines. A new field in electrical engineering. Columbia Eng Q 3:12–13, 30–31

    Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  • Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst 1(1):3–28

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are especially indebted to Jens Lemanski who provided them with valuable references and comments, in particular on Johann Christian Lange and the history of Euler-type diagrams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Prade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marquis, P., Papini, O., Prade, H. (2020). Elements for a History of Artificial Intelligence. In: Marquis, P., Papini, O., Prade, H. (eds) A Guided Tour of Artificial Intelligence Research. Springer, Cham. https://doi.org/10.1007/978-3-030-06164-7_1

Download citation

Publish with us

Policies and ethics