Abstract
When brain activity ions, the potential for human capacities augmentation is promising. In this paper, EMD is used to decompose EEG signals during Imagined Speech in order to use it as a biometric marker for creating a Biometric Recognition System. For each EEG channel, the most relevant Intrinsic Mode Functions (IMFs) are decided based on the Minkowski distance, and for each IMF 4 features are computed: Instantaneous and Teager energy distribution and Higuchi and Petrosian Fractal Dimension. To test the proposed method, a dataset with 20 Subjects who imagined 30 repetitions of 5 words in Spanish, is used. Four classifiers are used for this task - random forest, SVM, naive Bayes, and k-NN - and their performances are compared. The accuracy obtained (up to 0.92 using Linear SVM) after 10-folds cross-validation suggest that the proposed method based on EMD can be valuable for creating EEG-based biometrics of imagined speech for Subject identification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bashashati, A., Fatourechi, M., Ward, R.K., Birch, G.E.: A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. J. Neural Eng. 4(2), R32 (2007)
Desain, P., Farquhar, J., Haselager, P., Hesse, C., Schaefer, R.S.: What BCI research needs. In: Proceedings of the ACM CHI 2008 Conference on Human Factors in Computing Systems, Venice, Italy (2008)
Moctezuma, L.A., Carrillo, M., Villaseñor Pineda, L., Torres García, A.A.: Hacia la clasificación de actividad e inactividad lingüistica a partir de senales de electroencefalogramas (EEG). Res. Comput. Sci. 140, 135–149 (2017)
Torres-García, A.A., Reyes-García, C.A., Villaseñor-Pineda, L., Ramírez-Cortís, J.M.: Análisis de señales electroencefalográficas para la clasificación de habla imaginada. Revista mexicana de ingeniería biomédica 34(1), 23–39 (2013)
Nishimoto, T., Azuma, Y., Morioka, H., Ishii, S.: Individual identification by resting-state EEG using common dictionary learning. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10613, pp. 199–207. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68600-4_24
Brigham, K., Vijaya Kumar, B.V.K.: Subject identification from electroencephalogram (EEG) signals during imagined speech. In: 2010 Fourth IEEE International Conference on Biometrics: Theory Applications and Systems (BTAS), pp. 1–8 (2010)
Jain, A.K., Ross, A., Uludag, U: Biometric template security: challenges and solutions. In: 2005 13th European Signal Processing Conference, pp. 1–4 (2005)
Ashby, C., Bhatia, A., Tenore, F., Vogelstein, J.: Low-cost electroencephalogram (EEG) based authentication. In: 2011 5th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 442–445 (2011)
Palaniappan, R.: Electroencephalogram signals from imagined activities: a novel biometric identifier for a small population. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 604–611. Springer, Heidelberg (2006). https://doi.org/10.1007/11875581_73
Del Pozo-Banos, M., Alonso, J.B., Ticay-Rivas, J.R., Travieso, C.M.: Electroencephalogram subject identification: a review. Expert. Syst. Appl. 41(15), 6537–6554 (2014)
Steven, M.K.: Modern Spectral Estimation: Theory and Application. Signal Processing Series (1988)
Huang, N.E., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 454, no. 1971, pp. 903–995 (1998)
Rilling, G., Flandrin, P., Goncalves, P.: On empirical mode decomposition and its algorithms. In: IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, vol. 3 NSIP-03, Grado (I), pp. 8–11 (2003)
de Souza, D.B., Chanussot, J., Favre, A.-C.: On selecting relevant intrinsic mode functions in empirical mode decomposition: an energy-based approach. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 325–329 (2014)
Boutana, D., Benidir, M., Barkat, B.: On the selection of intrinsic mode function in EMD method: application on heart sound signal. In: 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL), pp. 1–5 (2010)
Didiot, E., Illina, I., Fohr, D., Mella, O.: A wavelet-based parameterization for speechmusic discrimination. Comput. Speech Lang. 24(2), 341–357 (2010)
Jabloun, F., Enis Cetin, A.: The Teager energy based feature parameters for robust speech recognition in car noise. In: 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp. 273–276 (1999)
Higuchi, T.: Approach to an irregular time series on the basis of the fractal theory. Phys. D Nonlinear Phenom. 31, 277–283 (1988)
Petrosian, A.: Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. In: Proceedings of the Eighth IEEE Symposium on Computer-Based Medical Systems, pp. 212–217 (1995)
Jasper, H.: Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr. Clin. Neurophysiol. 10, 370–375 (1958)
Moctezuma, L.A., Molinas, M., Torres García, A.A., Villaseñor Pineda, L., Carrillo, M.: Towards an API for EEG-based imagined speech classification. In: International Conference on Time Series and Forecasting (2018)
Bertrand, O., Perrin, F., Pernier, J.: A theoretical justification of the average reference in topographic evoked potential studies. Electroencephalogr. Clin. Neurophysiol./Evoked Potentials Sect. 62(6), 462–464 (1985)
Acknowledgments
This work was supported by Enabling Technologies - NTNU, under the project “David versus Goliath: single-channel EEG unravels its power through adaptive signal analysis - FlexEEG”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Moctezuma, L.A., Molinas, M. (2018). EEG-Based Subjects Identification Based on Biometrics of Imagined Speech Using EMD. In: Wang, S., et al. Brain Informatics. BI 2018. Lecture Notes in Computer Science(), vol 11309. Springer, Cham. https://doi.org/10.1007/978-3-030-05587-5_43
Download citation
DOI: https://doi.org/10.1007/978-3-030-05587-5_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05586-8
Online ISBN: 978-3-030-05587-5
eBook Packages: Computer ScienceComputer Science (R0)