Abstract
The speed and efficiency of overloaded artificial screening bus images are relatively low, which results in a large number of human resources waste problems. Therefore, an overload classification method for bus images based on image processing and support vector machine was proposed to intelligently identify the image overload or not. Based on the consideration we have done the following work. Firstly, the bus images were preprocessed, including image enhancement using histogram equalization method and image segmentation using improved Otsu algorithm; Secondly, the features of the segmented images was extracted by Kirsch edge detection operator to establish the image feature sample library; Finally, the appropriate kernel function and parameters were chosen to establish a classifier model based on support vector machine, which can train the sample library to classify the bus images. Theoretical analysis and experimental results show that the average classification accuracy of the polynomial kernel function is better than those of the Gaussian kernel function and the Sigmoid kernel function in the finite range of parameters selection. When the parameter d of the polynomial kernel function is 4, the classification accuracy is 93.68%, and its classification performance is stable and there is no significant increase or fall. And the conclusion was verified in the actual application.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ding, C.: The effect of overloaded cars and the tire pressure on the stress distribution of the road. Int. J. Intell. Inf. Manag. Sci. 5(3), 264–267 (2016)
Wang, W.L., Lu, C.Z., Li, Y.R.: Basic economic measures in long-term effective mechanism for administering overload and oversize of motor vehicles. Int. J. Intell. Inf. Manag. Sci. 24(6), 148–152 (2007)
Zhang, Z., Cheng, W., Wu, L., et al.: Study on circular traffic signs recognition method based on invariant moments and SVM. J. Electron. Meas. Instrum. 31(5), 773–779 (2017)
Zhao, G.Q., Wang, F.J.: Car train overload signal monitoring system optimization modeling research. Comput. Simul. 33(11), 162–163 (2016)
Wu, Y.Q., Meng, T.L., Wu, S.H.: Research progress of image thresholding methods in recent 20 years (1994–2014). J. Data Acquis. Process. 30(1), 1–23 (2015)
Yan, J.Z., Lin, S., Sing, B.K.: Change-based image cropping with exclusion and compositional features. Int. J. Comput. Vis. 114(1), 74–87 (2015)
A R Correspondng’s scientific contributions, Venmathi, Venmathi, A.R., et al.: Kirsch compass kernel edge detection algorithm for micro calcification clusters in mammogram. Middle East J. Sci. Res. 24(4), 1530–1535 (2016)
Liu, D.H., Zhang, Y.D., Li, X., et al.: Adaptive thresholding method under the dynamic environment. J. Comput. Appl. 36(S2), 152–156 (2016)
A R Correspondng’s scientific contributions, Venmathi, A.R., Venmathi, E.N., Ganesh, N.K.: Kirsch Compass kernel edge detection algorithm for micro calcification clusters in mammograms. Middle East J. Sci. Res. 24(4), 1530–1535 (2016)
Thang, P.Q., Thuy, N.T., Lam, H.T.: A modification of solution optimization in support vector machine simplification for classification. In: Bhateja, V., Nguyen, B.L., Nguyen, N.G., Satapathy, S.C., Le, D.-N. (eds.) Information Systems Design and Intelligent Applications. AISC, vol. 672, pp. 149–158. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7512-4_15
Zhi, J., Sun, J., Wang, Z., Ding, W.: Support vector machine classifier for prediction of the metastasis of colorectal cancer. Int. J. Mol. Med. 41(3), 1419–1426 (2018)
Mcdonald, G., Macdonald, C., Ounis, I.: A study of SVM kernel functions for sensitivity classification ensembles with POS sequences. In: SIGIR 2017, pp. 1097–1100 (2017)
Yang, L., Wang, Y.: Survey for various cross-validation estimators of generalization error. Appl. Res. Comput. 32(5), 1287–1290 (2011)
Zhou, Z.H.: Machine Learning. 2nd edn. Tsinghua University Press, Beijing (2016)
Yu, Z., Wong, H.S., Wen, G.: A modified support vector machine and its application to image segmentation. Image Vis. 29(1), 29–40 (2016)
Hsuan, T.L., Chih, J.L.: A study on Sigmoid Kernels for SVM and the training non-PSD kernels by SMO-type methods. Submitt. Neural Comput. 27(1), 15–23 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, T., Sun, Y., Liang, Y., Zhai, Y., Ji, X. (2018). Research on Overload Classification Method for Bus Images Based on Image Processing and SVM. In: Vaidya, J., Li, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2018. Lecture Notes in Computer Science(), vol 11336. Springer, Cham. https://doi.org/10.1007/978-3-030-05057-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-05057-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05056-6
Online ISBN: 978-3-030-05057-3
eBook Packages: Computer ScienceComputer Science (R0)