Abstract
Billions of users access the Internet through their mobile devices to get services. Mobile traffic classification has become a hot topic in recent years due to its large volume of traffic data. Many of the studies that have been done show that the key point of mobile traffic identification is to extract signatures. However, the process of signature extraction is usually too complex to perform. In this paper, we propose a novel method RFGRU which is based on the Random Forest and gated recurrent unit, to address the mobile traffic classification problem. Several experiments are performed to verify the effectiveness of RFGRU. The results show that RFGRU delivers a good recognition rate and can accurately identify the traffic of the mobile applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gowsalya, R., Amali, S.M.J.: Naive Bayes based network traffic classification using correlation information. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(3) (2014)
Cisco visual networking index: Global mobile data traffic forecast update 2014–2019. http://goo.gl/Zu8f2r
Xu, Q., Erman, J., Gerber, A., Mao, Z., Pang, J., Venkataraman, S.: Identifying diverse usage behaviors of smartphone apps. In: Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference, pp. 329–344. ACM (2011)
Tongaonkar, A., Dai, S., Nucci, A., Song, D.: Understanding mobile app usage patterns using in-app advertisements. In: Roughan, M., Chang, R. (eds.) PAM 2013. LNCS, vol. 7799, pp. 63–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36516-4_7
Moore, A.W., Zuev, D.: Internet traffic classification using Bayesian analysis techniques. In: ACM SIGMETRICS Performance Evaluation Review, vol. 33, pp. 50–60. ACM (2005)
Auld, T., Moore, A.W., Gull, S.F.: Bayesian neural networks for internet traffic classification. IEEE Trans. Neural Netw. 18(1), 223–239 (2007)
Este, A., Gringoli, F., Salgarelli, L.: Support vector machines for TCP traffic classification. Comput. Netw. 53(14), 2476–2490 (2009)
Lin, P., Xun-yi, Y., Liu, F., Zhen-ming, L.E.I.: A network traffic classification algorithm based on flow statistical characteristics. J. Beijing Univ. Posts Telecommun. 31(2), 15–19 (2008)
Xu, Q., et al.: Automatic generation of mobile app signatures from traffic observations. In: 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 1481–1489. IEEE (2015)
Ranjan, G., Tongaonkar, A., Torres, R.: Approximate matching of persistent lexicon using search-engines for classifying mobile app traffic. In: IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, pp. 1–9. IEEE (2016)
Yao, H., Ranjan, G., Tongaonkar, A., Liao, Y., Mao, Z.M.: Samples: self adaptive mining of persistent lexical snippets for classifying mobile application traffic. In: Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, pp. 439–451. ACM (2015)
Dai, S., Tongaonkar, A., Wang, X., Nucci, A., Song, D.: Networkprofiler: towards automatic fingerprinting of android apps. In: INFOCOM 2013, Proceedings IEEE, pp. 809–817. IEEE (2013)
Yun, X., Wang, Y., Zhang, Y., Zhou, Y.: A semantics-aware approach to the automated network protocol identification. IEEE/ACM Trans. Netw. (TON) 24(1), 583–595 (2016)
Wang, Y., Yun, X., Zhang, Y.: Rethinking robust and accurate application protocol identification: a nonparametric approach. In: 2015 IEEE 23rd International Conference on Network Protocols (ICNP), pp. 134–144. IEEE (2015)
Zhang, Z., Zhang, Z., Lee, P.P., Liu, Y., Xie, G.: Proword: an unsupervised approach to protocol feature word extraction. In: INFOCOM, 2014 Proceedings IEEE, pp. 1393–1401. IEEE (2014)
Hu, L., Li, J., Nie, L., Li, X.L., Shao, C.: What happens next? Future subevent prediction using contextual hierarchical LSTM. In: AAAI, pp. 3450–3456 (2017)
Yang, M., Tu, W., Wang, J., Xu, F., Chen, X.: Attention based LSTM for target dependent sentiment classification. In: AAAI, pp. 5013–5014 (2017)
Stuner, B., Chatelain, C., Paquet, T.: Cascading BLSTM networks for handwritten word recognition. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 3416–3421. IEEE (2016)
Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Montillo, A., Shotton, J., Winn, J., Iglesias, J.E., Metaxas, D., Criminisi, A.: Entangled decision forests and their application for semantic segmentation of CT images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 184–196. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22092-0_16
Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: multilevel traffic classification in the dark. In: ACM SIGCOMM Computer Communication Review, vol. 35, pp. 229–240. ACM (2005)
Nguyen, T.T.T., Armitage, G.: A survey of techniques for internet traffic classification using machine learning. IEEE Commun. Surv. Tutor. 10(4), 56–76 (2008)
Android monkey tool. http://developer.android.com/tools/help/monkey.html
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Acknowledgment
This work was supported by the National Natural Science Foundation of China (No. 61702288), the Natural Science Foundation of Tianjin in China (No. 16JCQNJC00700), the National Information Security Research Plan of China, and the Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Y., Jin, Y., Zhang, J., Wu, H., Zou, X. (2018). RFGRU: A Novel Approach for Mobile Application Traffic Identification. In: Vaidya, J., Li, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2018. Lecture Notes in Computer Science(), vol 11335. Springer, Cham. https://doi.org/10.1007/978-3-030-05054-2_38
Download citation
DOI: https://doi.org/10.1007/978-3-030-05054-2_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05053-5
Online ISBN: 978-3-030-05054-2
eBook Packages: Computer ScienceComputer Science (R0)