On the Sequential Massart Algorithm for Statistical Model Checking | SpringerLink
Skip to main content

On the Sequential Massart Algorithm for Statistical Model Checking

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation. Verification (ISoLA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11245))

Included in the following conference series:

Abstract

Several schemes have been provided in Statistical Model Checking (SMC) for the estimation of property occurrence based on predefined confidence and absolute or relative error. Simulations might be however costly if many samples are required and the usual algorithms implemented in statistical model checkers tend to be conservative. Bayesian and rare event techniques can be used to reduce the sample size but they can not be applied without prerequisite or knowledge about the system under scrutiny. Recently, sequential algorithms based on Monte Carlo estimations and Massart bounds have been proposed to reduce the sample size while providing guarantees on error bounds which has been shown to outperform alternative frequentist approaches [15]. In this work, we discuss some features regarding the distribution and the optimisation of these algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/.

  2. 2.

    The Okamoto bound is sometimes called the Chernoff bound in the literature.

  3. 3.

    A journal version with the proofs is currently submitted [14]. The proofs are also available here: https://www.researchgate.net/publication/317823195_Sequenti-al_Schemes_for_Frequentist_Estimation_of_Properties_in_Statistical_Model_Checking.

References

  1. Agresti, A., Caffo, B.: Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures. Am. Stat. 54(4), 280–288 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Ballarini, P., Barbot, B., Duflot, M., Haddad, S., Pekergin, N.: HASL: a new approach for performance evaluation and model checking from concepts to experimentation. Perform. Eval. 90, 53–77 (2015)

    Article  Google Scholar 

  3. Brown, L., Cai, T., DasGupta, A.: Interval estimation for a binomial proportion. Stat. Sci. 16(2), 101–133 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Chen, Y., Poskitt, C.M., Sun, J.: Learning from mutants: using code mutation to learn and monitor invariants of a cyber-physical system. In: SP, pp. 648–660 (2018)

    Google Scholar 

  5. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Statist. 23(4), 493–507 (1952)

    Article  MathSciNet  Google Scholar 

  6. Clopper, C.J., Pearson, E.S.: The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26, 404–413 (1934)

    Article  Google Scholar 

  7. Dagum, P., Karp, R.M., Luby, M., Ross, S.M.: An optimal algorithm for Monte Carlo estimation. SIAM J. Comput. 29(5), 1484–1496 (2000)

    Google Scholar 

  8. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC tutorial. STTT 17(4), 397–415 (2015)

    Article  Google Scholar 

  9. Grosu, R., Peled, D., Ramakrishnan, C.R., Smolka, S.A., Stoller, S.D., Yang, J.: Using statistical model checking for measuring systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 223–238. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45231-8_16

    Chapter  Google Scholar 

  10. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0_8

    Chapter  MATH  Google Scholar 

  11. Jegourel, C., Legay, A., Sedwards, S.: A platform for high performance statistical model checking – PLASMA. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 498–503. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_37

    Chapter  MATH  Google Scholar 

  12. Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model checking rare properties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 576–591. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_38

    Chapter  Google Scholar 

  13. Jegourel, C., Legay, A., Sedwards, S.: Command-based importance sampling for statistical model checking. Theor. Comput. Sci. 649, 1–24 (2016)

    Article  MathSciNet  Google Scholar 

  14. Jegourel, C., Sun, J., Dong, J.S.: Sequential schemes for frequentist estimation of properties in statistical model checking (Journal version). Currently submitted

    Google Scholar 

  15. Jegourel, C., Sun, J., Dong, J.S.: Sequential schemes for frequentist estimation of properties in statistical model checking. In: Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 333–350. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66335-7_23

    Chapter  MATH  Google Scholar 

  16. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 2.0: a tool for probabilistic model checking. In: QEST, pp. 322–323. IEEE (2004)

    Google Scholar 

  17. Massart, P.: The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18, 1269–1283 (1990)

    Article  MathSciNet  Google Scholar 

  18. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949)

    Article  Google Scholar 

  19. Okamoto, M.: Some inequalities relating to the partial sum of binomial probabilities. Ann. Inst. Stat. Math. 10, 29–35 (1958)

    Article  MathSciNet  Google Scholar 

  20. Samuels, M.L., Witmer, J.W.: Statistics for the Life Sciences, 2nd edn. Prentice Hall, Englewood Cliffs (1999)

    Google Scholar 

  21. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–186 (1945)

    Article  MathSciNet  Google Scholar 

  22. Younes, H.: Verification and planning for stochastic processes with asynchronous events. Ph.D. thesis, Carnegie Mellon University (2004)

    Google Scholar 

  23. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with application to stateflow/simulink verification. FMSD 43(2), 338–367 (2013)

    MATH  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Research Foundation (NRF), Prime Minister’s Office, Singapore, under its National Cybersecurity R&D Programme (Award No. NRF2014NCR-NCR001-040) and administered by the National Cybersecurity R&D Directorate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrille Jegourel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jegourel, C., Sun, J., Dong, J.S. (2018). On the Sequential Massart Algorithm for Statistical Model Checking. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Verification. ISoLA 2018. Lecture Notes in Computer Science(), vol 11245. Springer, Cham. https://doi.org/10.1007/978-3-030-03421-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03421-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03420-7

  • Online ISBN: 978-3-030-03421-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics