Abstract
This paper proposes a model for the identification of criminal events through the analysis of journalistic news implementing classification mechanism. The classification process is composed of three sub-process: Information Extraction, Classification process and a Selection process of the classes with the best scores obtained after the classification. To obtain the harmonic mean between recall and precision (F-Score) of this classification model, a criminological corpus called CAD was used to simulate different scenarios. CAD is a corpus in spanish composed of news reporting crimes about homicide, assaults, kidnapping, sexual abuse, and extortion, called High Impact Crimes according to [1].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
To get a copy of corpus CAD send a mail to luismoreno@cenidet.edu.mx/ncastro@cenidet.edu.mx.
- 2.
- 3.
- 4.
- 5.
- 6.
Master Students.
- 7.
- 8.
- 9.
References
Observatorio Nacional Ciudadano Seguridad, Justicia y Legalidad: Reporte sobre delitos de alto impacto Junio 2016. Reporte Año 3, No. 5, México (2016)
Kumar, A.S., Gopal, R.K.: Data mining based crime investigation systems: taxonomy and relevance. In: 2015 Global Conference on Communication Technologies (GCCT), pp. 850–853. IEEE (2015)
Ku, C.H., Iriberri, A., Leroy, G.: Crime information extraction from police and witness narrative reports. In: International Conference on Technologies for Homeland Security, pp. 193–198. IEEE (2008)
Nath, S.V.: Crime data mining. In: Elleithy, K. (ed.) Advances and Innovations in Systems, Computing Sciences and Software Engineering, pp. 405–409. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-6264-3_70
Ku, C.H., Leroy, G.: A decision support system: automated crime report analysis and classification for e-government. Gov. Inf. Q. 31, 534–544 (2014)
Dahbur, K., Muscarello, T.: Classification system for serial criminal patterns. Artif. Intell. Law 11, 251–269 (2003)
Chau, M., Xu, J.J., Chen, H.: Extracting meaningful entities from police narrative reports. In: Proceedings of the 2002 Annual National Conference on Digital Government Research, Digital Government Society of North America, pp. 1–5 (2002)
Lee, S., Kim, H.J.: News keyword extraction for topic tracking. In: Fourth International Conference on Networked Computing and Advanced Information Management, NCM 2008, vol. 2, pp. 554–559. IEEE (2008)
Pinheiro, V., Furtado, V., Pequeno, T., Nogueira, D.: Natural language processing based on semantic inferentialism for extracting crime information from text. In: International Conference on Intelligence and Security Informatics ISI, pp. 19–24. IEEE (2010)
Estivill-Castro, V., Lee, I.: Data mining techniques for autonomous exploration of large volumes of geo-referenced crime data. In: Proceedings of the 6th International Conference on Geocomputation, pp. 24–26 (2001)
Chen, H., Chung, W., Xu, J.J., Wang, G., Qin, Y., Chau, M.: Crime data mining: a general framework and some examples. Computer 37, 50–56 (2004)
Moreno Jiménez, L.G., et al.: Creación y clasificación de un corpus criminológico en español usando características lingüísticas superficiales. Research in Computing Science (2016, accepted)
Associated Press: 2016 AP Stylebook. Spiral-Bound (2016)
Torres-Moreno, J.M.: Automatic Text Summarization. Wiley, Hoboken (2014)
Acknowledgments
This work was supported by Mexican Government (Tecnológico Nacional de México/CENIDET, Red Temática en Tecnologías del Lenguaje-Conacyt, Conacyt scholarship 661101) and French Government (Université d’ Avignon et des Pays de Vaucluse/Laboratoire Informatique d’ Avignon).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Moreno-Jiménez, LG., Torres-Moreno, JM., Castro-Sánchez, N.A., Nava-Zea, A., Sierra, G. (2018). Criminal Events Detection in News Stories Using Intuitive Classification. In: Castro, F., Miranda-Jiménez, S., González-Mendoza, M. (eds) Advances in Computational Intelligence. MICAI 2017. Lecture Notes in Computer Science(), vol 10633. Springer, Cham. https://doi.org/10.1007/978-3-030-02840-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-02840-4_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-02839-8
Online ISBN: 978-3-030-02840-4
eBook Packages: Computer ScienceComputer Science (R0)