Attention Models for Motor Coordination and Resulting Interface Design | SpringerLink
Skip to main content

Attention Models for Motor Coordination and Resulting Interface Design

  • Chapter
  • First Online:
Developing Support Technologies

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 23))

  • 879 Accesses

Abstract

In the Industry 4.0 interface designs need to be adjusted to cognitive and sensorimotor abilities of humans in order to ensure a faultless and ergonomic human-machine interaction. The perception and processing of stimuli as well as the reactive motor planning and response of humans is essential for the exchange of information. Attention processes play an eminent role in both the processing of stimuli and the motor response. This chapter presents the current state of research regarding attention models for perception and motor control. Various attention theories agree that the execution of motor-cognitive tasks depends on the task setting and the task conditions (e.g., the complexity or sensory modality conditions). These findings should be actively integrated into design processes of interfaces for human-machine interaction to avoid negative consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baddeley, A. (1996). Exploring the central executive. The Quarterly Journal of Experimental Psychology Section A, 49(1), 5–28.

    Article  Google Scholar 

  2. Bangert, A. S., Reuter-Lorenz, P. A., Walsh, C. M., Schachter, A. B., & Seidler, R. D. (2010). Bimanual coordination and aging: Neurobehavioral implications. Neuropsychologia, 48(4), 1165–1170.

    Article  Google Scholar 

  3. Beurskens, R., & Bock, O. (2012). Age-related deficits of dual-task walking: A review. Neural Plasticity 131608.

    Google Scholar 

  4. Chaparro, A., Wood, J. M., & Carberry, T. (2005). Effects of age and auditory and visual dual tasks on closed-road driving performance. Optometry and Vision Science: Official Publication of the American Academy of Optometry, 82(8), 747–754.

    Article  Google Scholar 

  5. Coats, R. O., Fath, A. J., Astill, S. L., & Wann, J. P. (2016). Eye and hand movement strategies in older adults during a complex reaching task. Experimental Brain Research, 234(2), 533–547.

    Article  Google Scholar 

  6. Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14(2), 125–130.

    Article  Google Scholar 

  7. Duncan, J. (1986). Disorganisation of behaviour after frontal lobe damage. Cognitive Neuropsychology, 3(3), 271–290.

    Article  Google Scholar 

  8. Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems. Human Factors: The Journal of the Human Factors and Ergonomics Society, 37(1), 32–64.

    Article  Google Scholar 

  9. Enriquez-Geppert, S., Huster, R. J., & Herrmann, C. S. (2013). Boosting brain functions: Improving executive functions with behavioral training, neurostimulation, and neurofeedback. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 88(1), 1–16.

    Article  Google Scholar 

  10. Fozard, J. L., Vercryssen, M., Reynolds, S. L., Hancock, P. A., & Quilter, R. E. (1994). Age differences and changes in reaction time: The Baltimore longitudinal study of aging. Journal of Gerontology, 49(4), 179–189.

    Article  Google Scholar 

  11. Gärtner, K.-P. (Ed.). (2000). Multimodale Interaktion im Bereich der Fahrzeug- und Prozessführung: 42. Fachausschusssitzung Anthropotechnik der Deutschen Gesellschaft für Luft- und Raumfahrt e.V., 24. und 25. Oktober 2000, München. Fachausschusssitzung Anthropotechnik der Deutschen Gesellschaft für Luft- und Raumfahrt: Vol. 42. Bonn: DGLR.

    Google Scholar 

  12. Gilles, M. A., & Wing, A. M. (2003). Age-related changes in grip force and dynamics of hand movement. Journal of Motor Behavior, 35(1), 79–85.

    Article  Google Scholar 

  13. Gorecky, D., Schmitt, M., Loskyll, M., & Zuhlke, D. (2014). Human-machine-interaction in the industry 4.0 era. In 2014 12th IEEE International Conference on Industrial Informatics (INDIN) (pp. 289–294).

    Google Scholar 

  14. Janssen, C. P., Gould, S. J. J., Li, S. Y. W., Brumby, D. P., & Cox, A. L. (2015). Integrating knowledge of multitasking and interruptions across different perspectives and research methods. International Journal of Human-Computer Studies, 79, 1–5.

    Article  Google Scholar 

  15. Jaimes, A., & Sebe, N. (2007). Multimodal human–computer interaction: A survey. Computer Vision and Image Understanding, 108(1–2), 116–134.

    Article  Google Scholar 

  16. Kahneman, D. (1973). Attention and effort. Prentice Hall series in experimental psychology. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  17. Karnath, H.-O., & Thier, P. (2012). Kognitive Neurowissenschaften. Berlin, Heidelberg: Springer, Berlin Heidelberg.

    Book  Google Scholar 

  18. Körber, M., Gold, C., Lechner, D., & Bengler, K. (2016). The influence of age on the take-over of vehicle control in highly automated driving. Transportation Research Part F: Traffic Psychology and Behaviour, 39, 19–32.

    Article  Google Scholar 

  19. Meyer, D. E., & Kieras, D. E. (1997). A computational theory of executive cognitive processes and multiple-task performance: Part 1. Basic mechanisms. Psychological Review, 104(1), 3–65.

    Article  Google Scholar 

  20. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100.

    Article  Google Scholar 

  21. Norman, D. A., & Shallice, T. (1986). Attention to action. In R. J. Davidson, G. E. Schwartz & D. Shapiro (Eds.), Consciousness and self-regulation (pp. 1–18). Boston, MA: Springer US.

    Google Scholar 

  22. Olafsdottir, H., Zhang, W., Zatsiorsky, V. M., & Latash, M. L. (2007). Age-related changes in multifinger synergies in accurate moment of force production tasks. Journal of applied physiology (Bethesda, Md.: 1985), 102(4), 1490–1501.

    Article  Google Scholar 

  23. Oviatt, S., & Cohen, P. (2000). Perceptual user interfaces: Multimodal interfaces that process what comes naturally. Communications of the ACM, 43(3), 45–53.

    Article  Google Scholar 

  24. Parikh, P. J., & Cole, K. J. (2012). Handling objects in old age: Forces and moments acting on the object. Journal of applied physiology (Bethesda, Md.: 1985), 112(7), 1095–1104.

    Article  Google Scholar 

  25. Pashler, H. (2000). Task switching and multitask performance. In J. Driver & S. Monsell (Eds.), Control of cognitive processes. Attention and performance XVIII (pp. 277–305). Cambridge, MA: MIT Press.

    Google Scholar 

  26. Rosenbaum, D. A. (2008). Human motor control. San Diego, CA: Academic Press.

    Google Scholar 

  27. Rubinstein, J. S., Meyer, D. E., & Evans, J. E. (2001). Executive control of cognitive processes in task switching. Journal of Experimental Psychology: Human Perception and Performance, 27(4), 763–797.

    Google Scholar 

  28. Salvucci, D. D. (2005). A multitasking general executive for compound continuous tasks. Cognitive Science, 29(3), 457–492.

    Article  Google Scholar 

  29. Schlick, C. M., Bruder, R., & Luczak, H. (2010). Arbeitswissenschaft. Berlin, Heidelberg: Springer, Berlin Heidelberg.

    Book  Google Scholar 

  30. Seidler, R. D., Alberts, J. L., & Stelmach, G. E. (2002). Changes in multi-joint performance with age. Motor Control, 6(1), 19–31.

    Article  Google Scholar 

  31. Shinar, D., Tractinsky, N., & Compton, R. (2005). Effects of practice, age, and task demands, on interference from a phone task while driving. Accident; Analysis and Prevention, 37(2), 315–326.

    Article  Google Scholar 

  32. Spink, A., Cole, C., & Waller, M. (2008). Multitasking behavior. Annual Review of Information Science and Technology, 42(1), 93–118.

    Article  Google Scholar 

  33. Strobach, T., Salminen, T., Karbach, J., & Schubert, T. (2014). Practice-related optimization and transfer of executive functions: A general review and a specific realization of their mechanisms in dual tasks. Psychological Research, 78(6), 836–851.

    Article  Google Scholar 

  34. Trouvain, B., & Schlick, C. M. (2007). A comparative study of multimodal displays for multirobot supervisory control. In D. Harris (Ed.), Lecture Notes in Computer Science. Engineering psychology and cognitive ergonomics (vol. 4562, pp. 184–193). Berlin, Heidelberg: Springer Berlin Heidelberg.

    Google Scholar 

  35. Vieluf, S., Godde, B., Reuter, E.-M., Temprado, J.-J., & Voelcker-Rehage, C. (2015). Practice effects in bimanual force control: Does age matter? Journal of Motor Behavior, 47(1), 57–72.

    Article  Google Scholar 

  36. Wahn, B., & König, P. (2017). Is attentional resource allocation across sensory modalities task-dependent? Advances in Cognitive Psychology, 13(1), 83–96.

    Article  Google Scholar 

  37. Wickens, C. D. (1980). The structure of attentional resources. In R. S. Nickerson (Ed.), Attention and performance series. attention and performance VIII (pp. 239–257). Hoboken: Taylor and Francis.

    Google Scholar 

  38. Wickens, C. D. (2002). Multiple resources and performance prediction. Jorunal of Theoretical Issues in Ergomoics Science, 3(2), 159–177.

    Article  Google Scholar 

  39. Wishart, L. R., Lee, T. D., Murdoch, J. E., & Hodges, N. J. (2000). Effects of aging on automatic and effortful processes in bimanual coordination. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 55(2), 85–94.

    Article  Google Scholar 

  40. Woollacott, M., & Shumway-Cook, A. (2002). Attention and the control of posture and gait: A review of an emerging area of research. Gait and Posture, 16(1), 1–14.

    Article  Google Scholar 

  41. Wulf, G., Shea, C., & Lewthwaite, R. (2010). Motor skill learning and performance: A review of influential factors. Medical Education, 44(1), 75–84.

    Article  Google Scholar 

  42. Yan, J. H., Thomas, J. R., & Stelmach, G. E. (1998). Aging and rapid aiming arm movement control. Experimental Aging Research, 24(2), 155–168.

    Article  Google Scholar 

  43. Yogev-Seligmann, G., Hausdorff, J. M., & Giladi, N. (2012). Do we always prioritize balance when walking? Towards an integrated model of task prioritization. Movement Disorders: Official Journal of the Movement Disorder Society, 27(6), 765–770.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Wollesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wollesen, B., Bischoff, L.L., Rönnfeldt, J., Mattes, K. (2018). Attention Models for Motor Coordination and Resulting Interface Design. In: Karafillidis, A., Weidner, R. (eds) Developing Support Technologies. Biosystems & Biorobotics, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-01836-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01836-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01835-1

  • Online ISBN: 978-3-030-01836-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics