On the Equivalence of 2-Threshold Secret Sharing Schemes and Prefix Codes | SpringerLink
Skip to main content

On the Equivalence of 2-Threshold Secret Sharing Schemes and Prefix Codes

  • Conference paper
  • First Online:
Cyberspace Safety and Security (CSS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11161))

Included in the following conference series:

  • 2262 Accesses

Abstract

Kmargodski et al. have shown an equivalence between \((2,\infty )\)-threshold secret sharing schemes (evolving schemes) and prefix codes for the integers. Their approach exploits the codewords of the prefix code to share the secret. In this paper we propose an alternative approach that exploits only the tree structure underlying the prefix code. The approach works equally well both for the finite case, that is for (2, n)-threshold schemes, and for the infinite case, that is for evolving 2-threshold schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blakley, G.R.: Safeguarding cryptographic keys. In: Merwin, R.E., Zanca, J.T., Smith, M. (eds.) Proceedings of the 1979 AFIPS National Computer Conference. AFIPS Conference Proceedings, vol. 48, pp. 313–317. AFIPS Press (1979)

    Google Scholar 

  2. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20901-7_2

    Chapter  Google Scholar 

  3. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_3

    Chapter  Google Scholar 

  4. Cascudo, I.P., Cramer, R., Xing, C.: Bounds on the threshold gap in secret sharing and its applications. IEEE Trans. Inf. Theory 59(9), 5600–5612 (2013)

    Article  MathSciNet  Google Scholar 

  5. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  6. D’Arco, P., De Prisco, R., De Santis, A., Perez Del Pozo, A., Vaccaro, U.: Probabilistic Secret Sharing. Manuscript

    Google Scholar 

  7. Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of the 8th IEEE Structure in Complexity Theory, pp. 102–111 (1993)

    Google Scholar 

  8. Komargodski, I., Naor, M., Yogev, E.: How to share a secret, infinitely. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 485–514. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_19

    Chapter  Google Scholar 

  9. Komargodski, I., Paskin-Cherniavsky, A.: Evolving secret sharing: dynamic thresholds and robustness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 379–393. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_12

    Chapter  Google Scholar 

  10. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structure. In: Proceedings of the IEEE Global Telecommunication Conference, Globecom 1987, pp. 99–102 (1987). Journal version: Multiple assignment scheme for sharing secret. J. Cryptol. 6(1), 15–20 (1993)

    Google Scholar 

  11. Paskin-Cherniavsky, A.: How to infinitely share a secret more efficiently. IACR Cryptology ePrint Archive (2016). https://eprint.iacr.org/2016/194.pdf

  12. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  13. Simmons, G.J., Jackson, W., Martin, K.M.: The geometry of shared secret schemes. Bull. ICA 1, 71–88 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto De Prisco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

D’Arco, P., De Prisco, R., De Santis, A. (2018). On the Equivalence of 2-Threshold Secret Sharing Schemes and Prefix Codes. In: Castiglione, A., Pop, F., Ficco, M., Palmieri, F. (eds) Cyberspace Safety and Security. CSS 2018. Lecture Notes in Computer Science(), vol 11161. Springer, Cham. https://doi.org/10.1007/978-3-030-01689-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01689-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01688-3

  • Online ISBN: 978-3-030-01689-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics