Abstract
Kmargodski et al. have shown an equivalence between \((2,\infty )\)-threshold secret sharing schemes (evolving schemes) and prefix codes for the integers. Their approach exploits the codewords of the prefix code to share the secret. In this paper we propose an alternative approach that exploits only the tree structure underlying the prefix code. The approach works equally well both for the finite case, that is for (2, n)-threshold schemes, and for the infinite case, that is for evolving 2-threshold schemes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blakley, G.R.: Safeguarding cryptographic keys. In: Merwin, R.E., Zanca, J.T., Smith, M. (eds.) Proceedings of the 1979 AFIPS National Computer Conference. AFIPS Conference Proceedings, vol. 48, pp. 313–317. AFIPS Press (1979)
Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20901-7_2
Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_3
Cascudo, I.P., Cramer, R., Xing, C.: Bounds on the threshold gap in secret sharing and its applications. IEEE Trans. Inf. Theory 59(9), 5600–5612 (2013)
Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006)
D’Arco, P., De Prisco, R., De Santis, A., Perez Del Pozo, A., Vaccaro, U.: Probabilistic Secret Sharing. Manuscript
Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of the 8th IEEE Structure in Complexity Theory, pp. 102–111 (1993)
Komargodski, I., Naor, M., Yogev, E.: How to share a secret, infinitely. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 485–514. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_19
Komargodski, I., Paskin-Cherniavsky, A.: Evolving secret sharing: dynamic thresholds and robustness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 379–393. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_12
Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structure. In: Proceedings of the IEEE Global Telecommunication Conference, Globecom 1987, pp. 99–102 (1987). Journal version: Multiple assignment scheme for sharing secret. J. Cryptol. 6(1), 15–20 (1993)
Paskin-Cherniavsky, A.: How to infinitely share a secret more efficiently. IACR Cryptology ePrint Archive (2016). https://eprint.iacr.org/2016/194.pdf
Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)
Simmons, G.J., Jackson, W., Martin, K.M.: The geometry of shared secret schemes. Bull. ICA 1, 71–88 (1991)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
D’Arco, P., De Prisco, R., De Santis, A. (2018). On the Equivalence of 2-Threshold Secret Sharing Schemes and Prefix Codes. In: Castiglione, A., Pop, F., Ficco, M., Palmieri, F. (eds) Cyberspace Safety and Security. CSS 2018. Lecture Notes in Computer Science(), vol 11161. Springer, Cham. https://doi.org/10.1007/978-3-030-01689-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-01689-0_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01688-3
Online ISBN: 978-3-030-01689-0
eBook Packages: Computer ScienceComputer Science (R0)