Fusing Omnidirectional Visual Data for Probability Matching Prediction | SpringerLink
Skip to main content

Fusing Omnidirectional Visual Data for Probability Matching Prediction

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11182))

  • 1258 Accesses

Abstract

This work presents an approach to visual data fusion with omnidirectional imaging in the field of mobile robotics. An inference framework is established through Gaussian processes (GPs) and Information gain metrics, in order to fuse visual data between poses of the robot. Such framework permits producing a probability distribution of feature matching existence in the 3D global reference system. Designed together with a filter-based prediction scheme, this strategy allows us to propose an improved probability-oriented feature matching, since the probability distribution is projected onto the image in order to predict relevant areas where matches are more likely to appear. This approach reveals to improve standard matching techniques, since it confers adaptability to the changing visual conditions by means of the Information gain and probability encodings. Consequently, the output data can feed a reliable visual localization application. Real experiments have been produced with a publicly-available dataset in order to confirm the validity and robustness of the contributions. Moreover, comparisons with a standard matching technique are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abduljabbar, Z.A.: SEPIM: secure and efficient private image matching. App. Sci. 6(8), 213 (2016)

    Article  MathSciNet  Google Scholar 

  2. ARVC: Automation, Robotics and Computer Vision Research Group: Omnidiectional Image Dataset. Miguel Hernandez University (2018). http://arvc.umh.es/db/images/innova_trajectory/

  3. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  4. Bay, H., Tuytelaars, T., Van Gool, L.: Speeded up robust features. Comput. Vis. Image Underst. 110, 346–359 (2008)

    Article  Google Scholar 

  5. Cain, C., Leonessa, A.: FastSLAM using compressed occupancy grids. J. Sens. 2016, 23 pages (2016)

    Google Scholar 

  6. Chen, L.C., Hoang, D.C., Lin, H.I., Nguyen, T.H.: Innovative methodology for multi-view point cloud registration in robotic 3d object scanning and reconstruction. App. Sci. 6(5), 132 (2016)

    Article  Google Scholar 

  7. Gerrits, M., Bekaert, P.: Local stereo matching with segmentation-based outlier rejection. In: The 3rd Canadian Conference on Computer and Robot Vision (CRV 2006), p. 66 (2006)

    Google Scholar 

  8. Guerrero, M., Abaunza, H., Castillo, P., Lozano, R., Garcia, C., Rodriguez, A.: Passivity-based control for a micro air vehicle using unit quaternions. App. Sci. 7(1), 13 (2017)

    Article  Google Scholar 

  9. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  10. Kim, Y., Lee, H., Park, C., Choi, S.: A study for optimum survey method of underwater structure using the dual sonar sensor. J. Sens. 2018, 10 pages (2018)

    Google Scholar 

  11. Kitt, B., Geiger, A., Lategahn, H.: Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme. In: 2010 IEEE Intelligent Vehicles Symposium, pp. 486–492, June 2010

    Google Scholar 

  12. Kulback, S., Leiber, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  13. Lai, Y.C., Ting, W.O.: Design and implementation of an optimal energy control system for fixed-wing unmanned aerial vehicles. App. Sci. 6(11), 369 (2016)

    Article  Google Scholar 

  14. Li, J., Zhong, R., Hu, Q., Ai, M.: Feature-based laser scan matching and its application for indoor mapping. Sensors 16, 1265 (2016)

    Article  Google Scholar 

  15. Li, Y., Li, S., Song, Q., Liu, H., Meng, M.H.: Fast and robust data association using posterior based approximate joint compatibility test. IEEE Trans. Ind. Inform. 10(1), 331–339 (2014)

    Article  Google Scholar 

  16. Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293(5828), 133–135 (1985)

    Article  Google Scholar 

  17. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  18. McLachlan, G.: Discriminant Analysis and Statistical Pattern Recognition. Wiley Series in Probability an Statistics. Wiley, Hoboken (2004)

    MATH  Google Scholar 

  19. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning series, Massachusetts Institute of Technology (2006)

    Google Scholar 

  20. Scaramuzza, D., Martinelli, A., Siegwart, R.: A toolbox for easily calibrating omnidirectional cameras. In: IEEE IROS, China, pp. 5695–5701 (2006)

    Google Scholar 

  21. Shannon, C.E.: A mathematical theory of communication. SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)

    Article  MathSciNet  Google Scholar 

  22. Shuang, Y., et al.: Encoded light image active feature matching approach in binocular stereo vision. In: IFOST, pp. 406–409 (2016)

    Google Scholar 

  23. Valiente, D., Gil, A., Payá, L., Sebastián, J.M., Reinoso, O.: Robust visual localization with dynamic uncertainty management in omnidirectional SLAM. App. Sciences 7(12), 1294 (2017)

    Article  Google Scholar 

  24. Valiente, D., Reinoso, Ó., Gil, A., Payá, L., Ballesta, M.: Omnidirectional localization in vSLAM with uncertainty propagation and Bayesian regression. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2017. LNCS, vol. 10617, pp. 263–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70353-4_23

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Valiente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Valiente, D., Payá, L., Jiménez, L.M., Sebastián, J.M., Reinoso, O. (2018). Fusing Omnidirectional Visual Data for Probability Matching Prediction. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2018. Lecture Notes in Computer Science(), vol 11182. Springer, Cham. https://doi.org/10.1007/978-3-030-01449-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01449-0_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01448-3

  • Online ISBN: 978-3-030-01449-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics