Abstract
This work presents an approach to visual data fusion with omnidirectional imaging in the field of mobile robotics. An inference framework is established through Gaussian processes (GPs) and Information gain metrics, in order to fuse visual data between poses of the robot. Such framework permits producing a probability distribution of feature matching existence in the 3D global reference system. Designed together with a filter-based prediction scheme, this strategy allows us to propose an improved probability-oriented feature matching, since the probability distribution is projected onto the image in order to predict relevant areas where matches are more likely to appear. This approach reveals to improve standard matching techniques, since it confers adaptability to the changing visual conditions by means of the Information gain and probability encodings. Consequently, the output data can feed a reliable visual localization application. Real experiments have been produced with a publicly-available dataset in order to confirm the validity and robustness of the contributions. Moreover, comparisons with a standard matching technique are also presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abduljabbar, Z.A.: SEPIM: secure and efficient private image matching. App. Sci. 6(8), 213 (2016)
ARVC: Automation, Robotics and Computer Vision Research Group: Omnidiectional Image Dataset. Miguel Hernandez University (2018). http://arvc.umh.es/db/images/innova_trajectory/
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32
Bay, H., Tuytelaars, T., Van Gool, L.: Speeded up robust features. Comput. Vis. Image Underst. 110, 346–359 (2008)
Cain, C., Leonessa, A.: FastSLAM using compressed occupancy grids. J. Sens. 2016, 23 pages (2016)
Chen, L.C., Hoang, D.C., Lin, H.I., Nguyen, T.H.: Innovative methodology for multi-view point cloud registration in robotic 3d object scanning and reconstruction. App. Sci. 6(5), 132 (2016)
Gerrits, M., Bekaert, P.: Local stereo matching with segmentation-based outlier rejection. In: The 3rd Canadian Conference on Computer and Robot Vision (CRV 2006), p. 66 (2006)
Guerrero, M., Abaunza, H., Castillo, P., Lozano, R., Garcia, C., Rodriguez, A.: Passivity-based control for a micro air vehicle using unit quaternions. App. Sci. 7(1), 13 (2017)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, New York (2004)
Kim, Y., Lee, H., Park, C., Choi, S.: A study for optimum survey method of underwater structure using the dual sonar sensor. J. Sens. 2018, 10 pages (2018)
Kitt, B., Geiger, A., Lategahn, H.: Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme. In: 2010 IEEE Intelligent Vehicles Symposium, pp. 486–492, June 2010
Kulback, S., Leiber, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)
Lai, Y.C., Ting, W.O.: Design and implementation of an optimal energy control system for fixed-wing unmanned aerial vehicles. App. Sci. 6(11), 369 (2016)
Li, J., Zhong, R., Hu, Q., Ai, M.: Feature-based laser scan matching and its application for indoor mapping. Sensors 16, 1265 (2016)
Li, Y., Li, S., Song, Q., Liu, H., Meng, M.H.: Fast and robust data association using posterior based approximate joint compatibility test. IEEE Trans. Ind. Inform. 10(1), 331–339 (2014)
Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293(5828), 133–135 (1985)
Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
McLachlan, G.: Discriminant Analysis and Statistical Pattern Recognition. Wiley Series in Probability an Statistics. Wiley, Hoboken (2004)
Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning series, Massachusetts Institute of Technology (2006)
Scaramuzza, D., Martinelli, A., Siegwart, R.: A toolbox for easily calibrating omnidirectional cameras. In: IEEE IROS, China, pp. 5695–5701 (2006)
Shannon, C.E.: A mathematical theory of communication. SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)
Shuang, Y., et al.: Encoded light image active feature matching approach in binocular stereo vision. In: IFOST, pp. 406–409 (2016)
Valiente, D., Gil, A., Payá, L., Sebastián, J.M., Reinoso, O.: Robust visual localization with dynamic uncertainty management in omnidirectional SLAM. App. Sciences 7(12), 1294 (2017)
Valiente, D., Reinoso, Ó., Gil, A., Payá, L., Ballesta, M.: Omnidirectional localization in vSLAM with uncertainty propagation and Bayesian regression. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2017. LNCS, vol. 10617, pp. 263–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70353-4_23
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Valiente, D., Payá, L., Jiménez, L.M., Sebastián, J.M., Reinoso, O. (2018). Fusing Omnidirectional Visual Data for Probability Matching Prediction. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2018. Lecture Notes in Computer Science(), vol 11182. Springer, Cham. https://doi.org/10.1007/978-3-030-01449-0_48
Download citation
DOI: https://doi.org/10.1007/978-3-030-01449-0_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01448-3
Online ISBN: 978-3-030-01449-0
eBook Packages: Computer ScienceComputer Science (R0)