Abstract
Integrating 3D data with hyperspectral images opens up novel approaches for several robotic tasks. To that end, we register hyperspectral panoramas to cylindrically projected laser scans. With our approach, the required calibration can be done on board a mobile robot without the need of external markers using Mutual Information. Qualitative results show the robustness of the presented approach, and an application example demonstrates possible future applications for hyperspectral point clouds.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Buckley, S., Kurz, T., Howell, J., Schneider, D.: Terrestrial lidar and hyperspectral data fusion products for geological outcrop analysis. Comput. Geosci. 54, 249–258 (2013)
Luhmann, T., Robson, S., Kyle, S., Harley, I.: Photogram. Rec. Close Range Photogrammetry: Principles, Methods And Applications 25, 203–204 (2010)
Nieto, J., Monteiro, S., Viejo, D.: 3D geological modelling using laser and hyperspectral data. In: 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4568–4571. IEEE (2010)
Pandey, G., McBride, J., Savarese, S., Eustice, R.: Automatic extrinsic calibration of vision and lidar by maximizing mutual information. J. Field Robot. 32(5), 696–722 (2015)
Schneider, D., Maas, H.: A geometric model for linear-array-based terrestrial panoramic cameras. Photogram. Rec. 21(115), 198–210 (2006)
Shannon, C.: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)
Sima, A., Buckley, S., Kurz, T., Schneider, D.: Semi-automated registration of close-range hyperspectral scans using oriented digital camera imagery and a 3D model. Photogram. Rec. 29(145), 10–29 (2014)
Studholme, C., Hill, D., Hawkes, D.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recogn. 32(1), 71–86 (1999)
Taylor, Z., Nieto, J.: A mutual information approach to automatic calibration of camera and Lidar in natural environments. In: Australian Conference on Robotics and Automation, pp. 3–5 (2012)
Wiemann, T., Annuth, H., Lingemann, K., Hertzberg, J.: An extended evaluation of open source surface reconstruction software for robotic applications. J. Intell. Robot. Syst. 77(1), 149–170 (2015)
Xu, R., Chen, Y., Tang, S., Morikawa, S., Kurumi, Y.: Parzen-window based normalized mutual information for medical image registration. IEICE Trans. Inf. Syst. 91(1), 132–144 (2008)
Zhang, Q., Pless, R.: Extrinsic calibration of a camera and laser range finder (improves camera calibration). In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems. (IROS 2004), vol. 3, pp. 2301–2306. IEEE (2004)
Zhang, X., Zhang, A., Meng, X.: Automatic fusion of hyperspectral images and laser scans using feature points. J. Sens. 1–9, 2015 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Igelbrink, F., Wiemann, T., Pütz, S., Hertzberg, J. (2019). Markerless Ad-Hoc Calibration of a Hyperspectral Camera and a 3D Laser Scanner. In: Strand, M., Dillmann, R., Menegatti, E., Ghidoni, S. (eds) Intelligent Autonomous Systems 15. IAS 2018. Advances in Intelligent Systems and Computing, vol 867. Springer, Cham. https://doi.org/10.1007/978-3-030-01370-7_58
Download citation
DOI: https://doi.org/10.1007/978-3-030-01370-7_58
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01369-1
Online ISBN: 978-3-030-01370-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)