Increasing the Semantic Transparency of the KAOS Goal Model Concrete Syntax | SpringerLink
Skip to main content

Increasing the Semantic Transparency of the KAOS Goal Model Concrete Syntax

  • Conference paper
  • First Online:
Conceptual Modeling (ER 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11157))

Included in the following conference series:

  • 2377 Accesses

Abstract

Stakeholders without formal training in requirements modelling languages, such as KAOS, struggle to understand requirements specifications. The lack of semantic transparency of the KAOS goal model concrete syntax is perceived as a communication barrier between stakeholders and requirements engineers. We report on a series of related empirical experiments that include the proposal of alternative concrete syntaxes for KAOS by leveraging design contributions from novices and their evaluation with respect to semantic transparency, in contrast with the standard KAOS goal model concrete syntax. We propose an alternative concrete syntax for KAOS that increases its semantic transparency (mean difference of .23, in [−1.00..1.00]) leading to a significantly higher correct symbol identification (mean difference of 19%) by novices. These results may be a stepping stone for reducing the communication gap between stakeholders and requirements engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In: International Symposium on Requirements Engineering, pp. 249–262 (2001)

    Google Scholar 

  2. Moody, D.L.: The “physics” of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779 (2009)

    Article  Google Scholar 

  3. Caire, P., Genon, N., Heymans, P., Moody, D.L.: Visual notation design 2.0: towards user comprehensible requirements engineering notations. In: RE 2013, pp. 115–124 (2013)

    Google Scholar 

  4. Dardenne, A., Van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci. Comput. Program. 20(1–2), 3–50 (1993)

    Article  Google Scholar 

  5. Yu, E.: Modelling strategic relationships for process reengineering. MIT Press, Social Modeling for Requirements Engineering (2011)

    Google Scholar 

  6. Antón, A.I., McCracken, W.M., Potts, C.: Goal decomposition and scenario analysis in business process reengineering. In: Wijers, G., Brinkkemper, S., Wasserman, T. (eds.) CAiSE 1994. LNCS, vol. 811, pp. 94–104. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58113-8_164

    Chapter  Google Scholar 

  7. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems engineering: the TROPOS project. Inf. Syst. 27(6), 365–389 (2002)

    Article  Google Scholar 

  8. Rolland, C., Salinesi, C.: Modeling goals and reasoning with them. In: Aurum, A., Wohlin, C. (eds.) Engineering and Managing Software Requirements, pp. 189–217. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-28244-0_9

    Chapter  Google Scholar 

  9. GRL - Goal-oriented Requirement Language Kernel Description. http://www.cs.toronto.edu/km/GRL/. Accessed Mar 2018

  10. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models to Software, vol. 10. Wiley, Chichester (2009)

    Google Scholar 

  11. Prisacariu, C., Schneider, G.: A formal language for electronic contracts. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 174–189. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72952-5_11

    Chapter  MATH  Google Scholar 

  12. Gurr, C.A.: Effective diagrammatic communication: syntactic, semantic and pragmatic issues. J. Vis. Lang. Comput. 10(4), 317–342 (1999)

    Article  Google Scholar 

  13. Norman, D.: The Design of Everyday Things: Revised and Expanded Edition. Basic Books (AZ), New York (2013)

    Google Scholar 

  14. Genon, N., Amyot, D., Heymans, P.: Analysing the cognitive effectiveness of the UCM visual notation. In: Kraemer, F.A., Herrmann, P. (eds.) SAM 2010. LNCS, vol. 6598, pp. 221–240. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21652-7_14

    Chapter  Google Scholar 

  15. Genon, N., Heymans, P., Amyot, D.: Analysing the cognitive effectiveness of the BPMN 2.0 visual notation. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 377–396. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19440-5_25

    Chapter  Google Scholar 

  16. Granada, D., Vara, J.M., Brambilla, M., Bollati, V., Marcos, E.: Analysing the cognitive effectiveness of the WebML visual notation. Softw. Syst. Model. 16(1), 195–227 (2017)

    Article  Google Scholar 

  17. Howell, W.C., Fuchs, A.H.: Population stereotypy in code design. Organ. Behav. Hum. Perform. 3(3), 310–339 (1968)

    Article  Google Scholar 

  18. Jones, S.: Stereotypy in pictograms of abstract concepts. Ergonomics 26(6), 605–611 (1983)

    Article  Google Scholar 

  19. Zwaga, H., Boersema, T.: Evaluation of a set of graphic symbols. Appl. Ergon. 14(1), 43–54 (1983)

    Article  Google Scholar 

  20. Howard, C., O’Boyle, M., Eastman, V., Andre, T., Motoyama, T.: The relative effectiveness of symbols and words to convey photocopier functions. Appl. Ergon. 22(4), 218–224 (1991)

    Article  Google Scholar 

  21. Arning, K., Ziefle, M.: “It’s a bunch of shapes connected by lines”: evaluating the graphical notation system of business process modeling languages. In: 9th International Conference on Work With Computer Systems, WWCS 2009, Beijing, China (2009)

    Google Scholar 

  22. ISO: Graphical symbols: test methods - part 1: methods for testing comprehensibility, Switzerland (2014)

    Google Scholar 

  23. ISO: Graphical symbols: test methods for judged comprehensibility and for comprehension, Geneva (2001)

    Google Scholar 

  24. Welch, B.L.: The significance of the difference between two means when the population variances are unequal. Biometrika 29, 350–362 (1938)

    Article  Google Scholar 

  25. Moody, D.L., Heymans, P., Matulevičius, R.: Improving the effectiveness of visual representations in requirements engineering: an evaluation of i* visual syntax. In: RE 2009, pp. 171–180 (2009)

    Google Scholar 

  26. Matulevičius, R., Heymans, P.: Visually effective goal models using KAOS. In: Hainaut, J.-L., et al. (eds.) ER 2007. LNCS, vol. 4802, pp. 265–275. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76292-8_32

    Chapter  Google Scholar 

  27. Matulevičius, R., Heymans, P.: Comparing goal modelling languages: an experiment. In: Sawyer, P., Paech, B., Heymans, P. (eds.) REFSQ 2007. LNCS, vol. 4542, pp. 18–32. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73031-6_2

    Chapter  Google Scholar 

  28. Saleh, F., El-Attar, M.: A scientific evaluation of the misuse case diagrams visual syntax. Inf. Softw. Technol. 66, 73–96 (2015)

    Article  Google Scholar 

  29. Boone, S., Bernaert, M., Roelens, B., Mertens, S., Poels, G.: Evaluating and improving the visualisation of CHOOSE, an enterprise architecture approach for SMEs. In: Frank, U., Loucopoulos, P., Pastor, Ó., Petrounias, I. (eds.) PoEM 2014. LNBIP, vol. 197, pp. 87–102. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45501-2_7

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank NOVA LINCS UID/CEC/04516/2013 and FCT-MCTES SFRH/BD/108492/2015 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catarina Gralha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santos, M., Gralha, C., Goulão, M., Araújo, J. (2018). Increasing the Semantic Transparency of the KAOS Goal Model Concrete Syntax. In: Trujillo, J., et al. Conceptual Modeling. ER 2018. Lecture Notes in Computer Science(), vol 11157. Springer, Cham. https://doi.org/10.1007/978-3-030-00847-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00847-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00846-8

  • Online ISBN: 978-3-030-00847-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics