Abstract
Stakeholders without formal training in requirements modelling languages, such as KAOS, struggle to understand requirements specifications. The lack of semantic transparency of the KAOS goal model concrete syntax is perceived as a communication barrier between stakeholders and requirements engineers. We report on a series of related empirical experiments that include the proposal of alternative concrete syntaxes for KAOS by leveraging design contributions from novices and their evaluation with respect to semantic transparency, in contrast with the standard KAOS goal model concrete syntax. We propose an alternative concrete syntax for KAOS that increases its semantic transparency (mean difference of .23, in [−1.00..1.00]) leading to a significantly higher correct symbol identification (mean difference of 19%) by novices. These results may be a stepping stone for reducing the communication gap between stakeholders and requirements engineers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In: International Symposium on Requirements Engineering, pp. 249–262 (2001)
Moody, D.L.: The “physics” of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779 (2009)
Caire, P., Genon, N., Heymans, P., Moody, D.L.: Visual notation design 2.0: towards user comprehensible requirements engineering notations. In: RE 2013, pp. 115–124 (2013)
Dardenne, A., Van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci. Comput. Program. 20(1–2), 3–50 (1993)
Yu, E.: Modelling strategic relationships for process reengineering. MIT Press, Social Modeling for Requirements Engineering (2011)
Antón, A.I., McCracken, W.M., Potts, C.: Goal decomposition and scenario analysis in business process reengineering. In: Wijers, G., Brinkkemper, S., Wasserman, T. (eds.) CAiSE 1994. LNCS, vol. 811, pp. 94–104. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58113-8_164
Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems engineering: the TROPOS project. Inf. Syst. 27(6), 365–389 (2002)
Rolland, C., Salinesi, C.: Modeling goals and reasoning with them. In: Aurum, A., Wohlin, C. (eds.) Engineering and Managing Software Requirements, pp. 189–217. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-28244-0_9
GRL - Goal-oriented Requirement Language Kernel Description. http://www.cs.toronto.edu/km/GRL/. Accessed Mar 2018
van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models to Software, vol. 10. Wiley, Chichester (2009)
Prisacariu, C., Schneider, G.: A formal language for electronic contracts. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 174–189. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72952-5_11
Gurr, C.A.: Effective diagrammatic communication: syntactic, semantic and pragmatic issues. J. Vis. Lang. Comput. 10(4), 317–342 (1999)
Norman, D.: The Design of Everyday Things: Revised and Expanded Edition. Basic Books (AZ), New York (2013)
Genon, N., Amyot, D., Heymans, P.: Analysing the cognitive effectiveness of the UCM visual notation. In: Kraemer, F.A., Herrmann, P. (eds.) SAM 2010. LNCS, vol. 6598, pp. 221–240. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21652-7_14
Genon, N., Heymans, P., Amyot, D.: Analysing the cognitive effectiveness of the BPMN 2.0 visual notation. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 377–396. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19440-5_25
Granada, D., Vara, J.M., Brambilla, M., Bollati, V., Marcos, E.: Analysing the cognitive effectiveness of the WebML visual notation. Softw. Syst. Model. 16(1), 195–227 (2017)
Howell, W.C., Fuchs, A.H.: Population stereotypy in code design. Organ. Behav. Hum. Perform. 3(3), 310–339 (1968)
Jones, S.: Stereotypy in pictograms of abstract concepts. Ergonomics 26(6), 605–611 (1983)
Zwaga, H., Boersema, T.: Evaluation of a set of graphic symbols. Appl. Ergon. 14(1), 43–54 (1983)
Howard, C., O’Boyle, M., Eastman, V., Andre, T., Motoyama, T.: The relative effectiveness of symbols and words to convey photocopier functions. Appl. Ergon. 22(4), 218–224 (1991)
Arning, K., Ziefle, M.: “It’s a bunch of shapes connected by lines”: evaluating the graphical notation system of business process modeling languages. In: 9th International Conference on Work With Computer Systems, WWCS 2009, Beijing, China (2009)
ISO: Graphical symbols: test methods - part 1: methods for testing comprehensibility, Switzerland (2014)
ISO: Graphical symbols: test methods for judged comprehensibility and for comprehension, Geneva (2001)
Welch, B.L.: The significance of the difference between two means when the population variances are unequal. Biometrika 29, 350–362 (1938)
Moody, D.L., Heymans, P., Matulevičius, R.: Improving the effectiveness of visual representations in requirements engineering: an evaluation of i* visual syntax. In: RE 2009, pp. 171–180 (2009)
Matulevičius, R., Heymans, P.: Visually effective goal models using KAOS. In: Hainaut, J.-L., et al. (eds.) ER 2007. LNCS, vol. 4802, pp. 265–275. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76292-8_32
Matulevičius, R., Heymans, P.: Comparing goal modelling languages: an experiment. In: Sawyer, P., Paech, B., Heymans, P. (eds.) REFSQ 2007. LNCS, vol. 4542, pp. 18–32. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73031-6_2
Saleh, F., El-Attar, M.: A scientific evaluation of the misuse case diagrams visual syntax. Inf. Softw. Technol. 66, 73–96 (2015)
Boone, S., Bernaert, M., Roelens, B., Mertens, S., Poels, G.: Evaluating and improving the visualisation of CHOOSE, an enterprise architecture approach for SMEs. In: Frank, U., Loucopoulos, P., Pastor, Ó., Petrounias, I. (eds.) PoEM 2014. LNBIP, vol. 197, pp. 87–102. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45501-2_7
Acknowledgements
We thank NOVA LINCS UID/CEC/04516/2013 and FCT-MCTES SFRH/BD/108492/2015 for financial support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Santos, M., Gralha, C., Goulão, M., Araújo, J. (2018). Increasing the Semantic Transparency of the KAOS Goal Model Concrete Syntax. In: Trujillo, J., et al. Conceptual Modeling. ER 2018. Lecture Notes in Computer Science(), vol 11157. Springer, Cham. https://doi.org/10.1007/978-3-030-00847-5_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-00847-5_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00846-8
Online ISBN: 978-3-030-00847-5
eBook Packages: Computer ScienceComputer Science (R0)