Abstract
Computational sensemaking aims to develop methods and systems to “make sense” of complex data and information. The ultimate goal is then to provide insights and enhance understanding for supporting subsequent intelligent actions. Understandability and interpretability are key elements of that process as well as models and patterns captured therein. Here, declarativity helps to include guiding knowledge structures into the process, while explication provides interpretability, transparency, and explainability. This paper provides an overview of the key points and important developments in these areas, and outlines future potential and challenges.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of VLDB, pp. 487–499. Morgan Kaufmann (1994)
Atzmueller, M.: Subgroup discovery. WIREs Data Min. Knowl. Discov. 5(1), 35–49 (2015)
Atzmueller, M.: Onto explicative data mining: exploratory, interpretable and explainable analysis. In: Proceedings of Dutch-Belgian Database Day. TU Eindhoven, Netherlands (2017)
Atzmueller, M., Hayat, N., Schmidt, A., Klöpper, B.: Explanation-aware feature selection using symbolic time series abstraction: approaches and experiences in a petro-chemical production context. In: Proceedings of IEEE INDIN. IEEE Press, Boston (2017)
Atzmueller, M., Hayat, N., Trojahn, M., Kroll, D.: Explicative human activity recognition using adaptive association rule-based classification. In: Proceedings of IEEE International Conference on Future IoT Technologies. IEEE Press, Boston (2018, accepted)
Atzmueller, M., et al.: Big data analytics for proactive industrial decision support: approaches & first experiences in the context of the FEE project. atp edition 58(9) (2016)
Atzmueller, M., Lemmerich, F.: A methodological approach for the effective modeling of Bayesian networks. In: Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R. (eds.) KI 2008. LNCS (LNAI), vol. 5243, pp. 160–168. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85845-4_20
Atzmueller, M., Puppe, F.: A methodological view on knowledge-intensive subgroup discovery. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 318–325. Springer, Heidelberg (2006). https://doi.org/10.1007/11891451_28
Atzmueller, M., Puppe, F., Buscher, H.P.: Exploiting background knowledge for knowledge-intensive subgroup discovery. In: Proceedings of 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), Edinburgh, Scotland, pp. 647–652 (2005)
Atzmueller, M., Roth-Berghofer, T.: The mining and analysis continuum of explaining uncovered. In: Proceedings of AI (2010)
Atzmueller, M., Schmidt, A., Kloepper, B., Arnu, D.: HypGraphs: an approach for analysis and assessment of graph-based and sequential hypotheses. In: Appice, A., Ceci, M., Loglisci, C., Masciari, E., Raś, Z.W. (eds.) NFMCP 2016. LNCS (LNAI), vol. 10312, pp. 231–247. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61461-8_15
Atzmueller, M., Seipel, D.: Using declarative specifications of domain knowledge for descriptive data mining. In: Seipel, D., Hanus, M., Wolf, A. (eds.) INAP/WLP-2007. LNCS (LNAI), vol. 5437, pp. 149–164. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00675-3_10
Atzmueller, M., Sternberg, E.: Mixed-initiative feature engineering using knowledge graphs. In: Proceedings of K-CAP. ACM (2017)
Baumeister, J., Atzmüller, M., Puppe, F.: Inductive learning for case-based diagnosis with multiple faults. In: Craw, S., Preece, A. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 28–42. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46119-1_4
Biran, O., Cotton, C.: Explanation and justification in machine learning: a survey. In: IJCAI 2017, Workshop on Explainable AI (2017)
Bizer, C., et al.: DBpedia - a crystallization point for the web of data. Web Semant. 7(3), 154–165 (2009)
Blockeel, H.: Data mining: from procedural to declarative approaches. New Gener. Comput. 33(2), 115–135 (2015)
Blockeel, H.: Declarative data analysis. Int. J. Data Sci. Anal., 1–7 (2017)
Carnap, R.: Logical Foundations of Probability (1962)
Chapman, P., et al.: CRISP-DM 1.0: Step-by-Step Data Mining Guide. CRISP-DM consortium: NCR Systems Engineering, DaimlerChrysler AG, SPSS Inc. and OHRA Verzekeringen en Bank Groep B.V (2000)
De Raedt, L., Kersting, K.: Statistical relational learning. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 916–924. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-30164-8_786
Dou, D., Wang, H., Liu, H.: Semantic data mining: a survey of ontology-based approaches. In: IEEE ICSC, pp. 244–251. IEEE (2015)
Duivesteijn, W., Knobbe, A., Feelders, A., van Leeuwen, M.: Subgroup discovery meets Bayesian networks-an exceptional model mining approach. In: Proceedings of International Conference on Data Mining (ICDM), pp. 158–167. IEEE, Washington, DC (2010)
Duivesteijn, W., Feelders, A., Knobbe, A.J.: Different slopes for different folks: mining for exceptional regression models with Cook’s distance. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 868–876. ACM, New York (2012)
Duivesteijn, W., Feelders, A.J., Knobbe, A.: Exceptional model mining. Data Min. Knowl. Disc. 30(1), 47–98 (2016)
Duivesteijn, W., Thaele, J.: Understanding where your classifier does (Not) work - the SCaPE model class for EMM. In: Proceedings of ICDM, pp. 809–814. IEEE (2014)
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: an overview. In: Advances in Knowledge Discovery and Data Mining, pp. 1–34. AAAI Press (1996)
Gamberger, D., Lavrac, N., Wettschereck, D.: Subgroup visualization: a method and application in population screening. In: Proceedings of IDAMAP (2002)
Gaskin, C.J., Happell, B.: On exploratory factor analysis: a review of recent evidence, an assessment of current practice, and recommendations for future use. Int. J. Nurs. Stud. 51(3), 511–521 (2014)
Goethals, B., Moens, S., Vreeken, J.: MIME: a framework for interactive visual pattern mining. In: Proceedings of ACM SIGKDD, pp. 757–760. ACM (2011)
Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-making and a “right to explanation”. arXiv preprint arXiv:1606.08813 (2016)
Guidotti, R., Monreale, A., Turini, F., Pedreschi, D., Giannotti, F.: A survey of methods for explaining black box models. arXiv preprint arXiv:1802.01933 (2018)
Henelius, A., Puolamäki, K., Boström, H., Asker, L., Papapetrou, P.: A peek into the black box: exploring classifiers by randomization. Data Min. Knowl. Discov. 28(5–6), 1503–1529 (2014)
Henelius, A., et al.: GoldenEye++: a closer look into the black box. In: Gammerman, A., Vovk, V., Papadopoulos, H. (eds.) SLDS 2015. LNCS (LNAI), vol. 9047, pp. 96–105. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17091-6_5
Henelius, A., Puolamäki, K., Ukkonen, A.: Interpreting classifiers through attribute interactions in datasets. In: Proceedings of 2017 ICML Workshop on Human Interpretability in Machine Learning (WHI 2017) (2017)
Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia. Artif. Intell. 194, 28–61 (2013)
Jaroszewicz, S., Simovici, D.A.: Interestingness of frequent itemsets using Bayesian networks as background knowledge. In: Proceedings of SIGKDD, pp. 178–186. ACM (2004)
Kaytoue, M., Plantevit, M., Zimmermann, A., Bendimerad, A., Robardet, C.: Exceptional contextual subgraph mining. Mach. Learn. 106(8), 1171–1211 (2017)
Keim, D., Ward, M.: Visualization. In: Berthold, M., Hand, D.J. (eds.) Intelligent Data Analysis. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-48625-1_11
Klösgen, W.: Explora: a multipattern and multistrategy discovery assistant. In: Advances in Knowledge Discovery and Data Mining, pp. 249–271. AAAI Press (1996)
Klösgen, W.: Subgroup discovery. In: Handbook of Data Mining and Knowledge Discovery. Oxford University Press, New York (2002). Chap. 16.3
Klösgen, W., Lauer, S.R.W.: Visualization of data mining results. In: Handbook of Data Mining and Knowledge Discovery. Oxford University Press, New York (2002). Chap. 20.1
Knobbe, A.J., Cremilleux, B., Fürnkranz, J., Scholz, M.: From local patterns to global models: the LeGo approach to data mining. In: From Local Patterns to Global Models: Proceedings of the ECML/PKDD-08 Workshop (LeGo 2008), pp. 1–16 (2008)
Kolodner, J.L.: Making the implicit explicit: clarifying the principles of case-based reasoning. In: Case-based Reasoning: Experiences, Lessons and Future Directions, pp. 349–370 (1996)
Lavrač, N.: Subgroup discovery techniques and applications. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 2–14. Springer, Heidelberg (2005). https://doi.org/10.1007/11430919_2
Lavrac, N., Kavsek, B., Flach, P., Todorovski, L.: Subgroup discovery with CN2-SD. J. Mach. Learn. Res. 5, 153–188 (2004)
Leman, D., Feelders, A., Knobbe, A.: Exceptional model mining. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5212, pp. 1–16. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87481-2_1
Lemmerich, F., Becker, M., Atzmueller, M.: Generic pattern trees for exhaustive exceptional model mining. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7524, pp. 277–292. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33486-3_18
Li, W., Han, J., Pei, J.: CMAR: accurate and efficient classification based on multiple class-association rules. In: Cercone, N., Lin, T.Y., Wu, X. (eds.) Proceedings of International Conference on Data Mining (ICDM), pp. 369–376. IEEE Computer Society (2001)
Li, X., Huan, J.: Constructivism learning: a learning paradigm for transparent predictive analytics. In: Proceedings of SIGKDD, pp. 285–294. ACM (2017)
Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 2–11. ACM (2003)
Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. Data Min. Knowl. Discov. 15(2), 107–144 (2007)
Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Proceedings of SIGKDD, pp. 80–86. AAAI Press, August 1998
Maher, P.: Explication defended. Studia Logica 86(2), 331–341 (2007)
Mandel, D.R.: Counterfactual and causal explanation: from early theoretical views to new frontiers. In: The Psychology of Counterfactual Thinking, pp. 23–39. Routledge (2007)
Mitzlaff, F., Atzmueller, M., Hotho, A., Stumme, G.: The social distributional hypothesis. J. Soc. Netw. Anal. Min. 4(216), 1–14 (2014)
Mitzlaff, F., Atzmueller, M., Stumme, G., Hotho, A.: Semantics of user interaction in social media. In: Ghoshal, G., Poncela-Casasnovas, J., Tolksdorf, R. (eds.) Complex Networks IV. SCI, vol. 476. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36844-8_2
Morik, K.: Detecting interesting instances. In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds.) Pattern Detection and Discovery. LNCS (LNAI), vol. 2447, pp. 13–23. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45728-3_2
Morik, K., Boulicaut, J.-F., Siebes, A. (eds.): Local Pattern Detection. LNCS (LNAI), vol. 3539. Springer, Heidelberg (2005). https://doi.org/10.1007/b137601
Morshed, A., Dutta, R., Aryal, J.: Recommending environmental knowledge as linked open data cloud using semantic machine learning. In: Proceedings of IEEE ICDEW, pp. 27–28. IEEE (2013)
Musto, C., Narducci, F., Lops, P., de Gemmis, M., Semeraro, G.: Linked open data-based explanations for transparent recommender systems. Int. J. Hum.-Comput. Stud. (2018)
Paulheim, H.: Explain-a-LOD: using linked open data for interpreting statistics. In: Proceedings of ACM IUI, pp. 313–314. ACM (2012)
Paulheim, H.: Generating possible interpretations for statistics from linked open data. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 560–574. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30284-8_44
Paulheim, H., Fümkranz, J.: Unsupervised generation of data mining features from linked open data. In: Proceedings of WIMS, p. 31. ACM (2012)
Pujara, J., Miao, H., Getoor, L., Cohen, W.: Large-scale knowledge graph identification using PSL. In: AAAI Fall Symposium on Semantics for Big Data (2013)
Rauch, J., Šimůnek, M.: Learning association rules from data through domain knowledge and automation. In: Bikakis, A., Fodor, P., Roman, D. (eds.) RuleML 2014. LNCS, vol. 8620, pp. 266–280. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09870-8_20
Ribeiro, M.T., Singh, S., Guestrin, C.: Model-agnostic interpretability of machine learning. In: Proceedings of 2016 ICML Workshop on Human Interpretability in Machine Learning (2016)
Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you? Explaining the predictions of any classifier. In: Proceedings of ACM SIGKDD, pp. 1135–1144. ACM (2016)
Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic explanations. AAAI (2018)
Richardson, M., Domingos, P.: Learning with knowledge from multiple experts. In: Proceedings of ICML, pp. 624–631. AAAI Press (2003)
Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006)
Ristoski, P., Paulheim, H.: Semantic web in data mining and knowledge discovery: a comprehensive survey. Web Semant. 36, 1–22 (2016)
Roth-Berghofer, T., Schulz, S., Leake, D., Bahls, D.: Explanation-aware computing. AI Mag. 28(4) (2007)
Roth-Berghofer, T.R., Cassens, J.: Mapping goals and kinds of explanations to the knowledge containers of case-based reasoning systems. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 451–464. Springer, Heidelberg (2005). https://doi.org/10.1007/11536406_35
Seipel, D., Nogatz, F., Abreu, S.: Domain-specific languages in prolog for declarative expert knowledge in rules and ontologies. Comput. Lang. Syst. Struct. 51, 102–117 (2018)
Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of IEEE Symposium on Visual Languages, Boulder, Colorado, pp. 336–343 (1996)
Sørmo, F., Cassens, J., Aamodt, A.: Explanation in case-based reasoning - perspectives and goals. Artif. Intell. Rev. 24(2), 109–143 (2005)
Spenke, M.: Visualization and interactive analysis of blood parameters with InfoZoom. Artif. Intell. Med. 22(2), 159–172 (2001)
Spenke, M., Beilken, C.: Visual, interactive data mining with InfoZoom - the financial dataset. In: Workshop Notes on Discovery Challenge at the 3rd European Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 15–18 (1999)
Spieker, P.: Natürlichsprachliche Erklärungen in technischen Expertensystemen. Dissertation, University of Kaiserslautern (1991)
Thabtah, F.: A review of associative classification mining. Knowl. Eng. Rev. 22(1), 37–65 (2007)
Theus, M.: Interactive data visualization using Mondrian. J. Stat. Softw. 7(11), 1–9 (2003)
Tiddi, I., d’Aquin, M., Motta, E.: An ontology design pattern to define explanations. In: Proceedings of K-Cap. ACM, New York (2015)
Tolomei, G., Silvestri, F., Haines, A., Lalmas, M.: Interpretable predictions of tree-based ensembles via actionable feature tweaking. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 465–474. ACM (2017)
Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated bibliography. ACM Sigplan Not. 35(6), 26–36 (2000)
Leeuwen, M.: Interactive data exploration using pattern mining. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. LNCS, vol. 8401, pp. 169–182. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43968-5_9
Vavpetič, A., Lavrač, N.: Semantic subgroup discovery systems and workflows in the SDM-Toolkit. Comput. J. 56(3), 304–320 (2013)
Vavpetic, A., Podpecan, V., Lavrac, N.: Semantic subgroup explanations. J. Intell. Inf. Syst. 42(2), 233–254 (2014)
Velicer, W.F., Eaton, C.A., Fava, J.L.: Construct explication through factor or component analysis: a review and evaluation of alternative procedures for determining the number of factors or components. In: Goffin, R.D., Helmes, E. (eds.) Problems and Solutions in Human Assessment: Honoring Douglas N. Jackson at Seventy, pp. 41–71. Springer, Boston (2000). https://doi.org/10.1007/978-1-4615-4397-8_3
Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR (2017)
Wick, M.R., Thompson, W.B.: Reconstructive expert system explanation. Artif. Intell. 54(1–2), 33–70 (1992)
Wilcke, X., Bloem, P., de Boer, V.: The knowledge graph as the default data model for learning on heterogeneous knowledge. Data Sci. (Preprint), 1–19 (2017)
Wirth, R., Hipp, J.: CRISP-DM: towards a standard process model for data mining. In: Proceedings of 4th International Conference on the Practical Application of Knowledge Discovery and Data Mining, pp. 29–39. Morgan Kaufmann (2000)
Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Komorowski, J., Zytkow, J. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63223-9_108
Zelezny, F., Lavrac, N., Dzeroski, S.: Using constraints in relational subgroup discovery. In: Proceedings of International Conference on Methodology and Statistics, pp. 78–81. University of Ljubljana (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Atzmueller, M. (2018). Declarative Aspects in Explicative Data Mining for Computational Sensemaking. In: Seipel, D., Hanus, M., Abreu, S. (eds) Declarative Programming and Knowledge Management. WFLP WLP INAP 2017 2017 2017. Lecture Notes in Computer Science(), vol 10997. Springer, Cham. https://doi.org/10.1007/978-3-030-00801-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-00801-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00800-0
Online ISBN: 978-3-030-00801-7
eBook Packages: Computer ScienceComputer Science (R0)