Plane Object-Based High-Level Map Representation for SLAM | SpringerLink
Skip to main content

Plane Object-Based High-Level Map Representation for SLAM

  • Conference paper
  • First Online:
Computer Vision and Graphics (ICCVG 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11114))

Included in the following conference series:

Abstract

High-level map representation providing object-based understanding of the environment is an important component for SLAM. We present a novel algorithm to build plane object-based map representation upon point cloud that is obtained in real–time from RGB-D sensors such as Kinect. On the basis of segmented planes in point cloud we construct a graph, where a node and edge represent a plane and its real intersection with other plane, respectively. After that, we extract all trihedral angles (corners) represented by 3rd order cycles in the graph. Afterwards, we execute systematic aggregation of trihedral angles into object such as trihedral angles of the same plane-based object have common edges. Finally, we classify objects using simple subgraph patterns and determine their physical sizes. Our experiments figured out that the proposed algorithm reliably extracts objects, determines their physical sizes and classifies them with a promising performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available at: http://bit.ly/ICCVG2018.

References

  1. Bao, S., Bagra, M., Chao, Y., Savarese, S.: Semantic structure from motion with points, regions, and objects. In: IEEE Conference on Computer Vision and Pattern Recognitoin, pp. 2703–2710 (2012)

    Google Scholar 

  2. Besl, P., McKay, N.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  3. Bodis-Szomoru, A., Riemenschneider, H., Van-Gool, L.: Efficient edge-aware surface mesh reconstruction for urban scenes. Comput. Vis. Image Underst. 66, 91–106 (2015)

    Google Scholar 

  4. Bresson, G., Alsayed, Z., Yu, L., Glaser, S.: Simultaneous localization and mapping: a survey of current trends in autonomous driving. IEEE Trans. Intell. Veh. 2(3), 194–220 (2017)

    Article  Google Scholar 

  5. Cadena, C., et al.: Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans. Robot. 32(6), 1309–1332 (2016)

    Article  Google Scholar 

  6. Chen, H.: Pose determination from line-to-plane correspondences: existence condition and closed-form solutions. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 530–541 (1991)

    Article  Google Scholar 

  7. Civera, J., Galvez-Lopez, D., Riazuelo, L., Tardos, J., Montiel, J.: Towards semantic SLAM using a monocular camera. In: Intelligent Robots and Systems (IROS), pp. 1277–1284 (2011)

    Google Scholar 

  8. Dame, A., Prisacariu, V., Ren, C., Reid, I.: Dense reconstruction using 3D object shape priors. In: IEEE Conference Computer Vision and Pattern Recognition, pp. 1288–1295 (2013)

    Google Scholar 

  9. Flint, A., Murray, D., Reid, I.: Manhattan scene understanding using monocular, stereo, and 3D features. In: International Conference on Computer Vision, pp. 2228–2235 (2011)

    Google Scholar 

  10. Grimson, W., Lozano-Perez, T.: Model-based recognition and localization from sparse range or tactile data. Int. J. Robot. Res. 3(3), 3–35 (1984)

    Article  Google Scholar 

  11. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using depth cameras for dense 3D modeling of indoor environments. In: International Symposium Experimental Robotics (ISER), pp. 477–491 (2010)

    Chapter  Google Scholar 

  12. Khoshelham, K.: Direct 6-DoF pose estimation from point-plane correspondences. In: International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–6 (2015). https://doi.org/10.1109/DICTA.2015.7371253

  13. Kundu, A., Li, Y., Dellaert, F., Li, F., Rehg, J.M.: Joint semantic segmentation and 3D reconstruction from monocular video. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 703–718. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_45

    Chapter  Google Scholar 

  14. Lai, K., Bo, L., Fox, D.: Unsupervised feature learning for 3D scene labeling, pp. 3050–3057. IEEE, September 2014

    Google Scholar 

  15. Mozos, M., Triebel, R., Jensfelt, P., Axel, R., Burgard, W.: Supervised semantic labeling of places using information extracted from sensor data. Robot. Auton. Syst. 55(5), 391–402 (2007)

    Article  Google Scholar 

  16. Nister, D.: A minimal solution to the generalised 3-point pose problem. In: IEEE Conference Computer Vision and Pattern Recognition (CVPR), pp. 560–567, June 2004

    Google Scholar 

  17. Pathak, K., Birk, A., Vaskevicius, N., Poppinga, J.: Fast registration based on noisy planes with unknown correspondences for 3-D mapping. IEEE Trans. Rob. 26(3), 424–441 (2010)

    Article  Google Scholar 

  18. Pillai, S., Leonard, J.: Monocular SLAM supported object recognition. In: Robotics Science and Systems Conference, pp. 310–319 (2015)

    Google Scholar 

  19. Pronobis, A., Jensfelt, P.: Large-scale semantic mapping and reasoning with heterogeneous modalities. In: IEEE International Conference on Robotics and Automation, pp. 3515–3522, May 2012

    Google Scholar 

  20. Ramalingam, S., Taguchi, Y.: A theory of minimal 3D point to 3D plane registration and its generalization. Int. J. Comput. Vis. 102, 73–90 (2012)

    Article  MathSciNet  Google Scholar 

  21. Salas-Moreno, R., Newcombe, R., Strasdat, H., Kelly, P., Davison, A.: SLAM+: simultaneous localisation and mapping at the level of objects. In: IEEE Conference Computer Vision and Pattern Recognition, pp. 1352–1359 (2013)

    Google Scholar 

  22. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: Proceedings of the International Conference on Intelligent Robot Systems (IROS), pp. 573–580 (2012)

    Google Scholar 

  23. Taguchi, Y., Jian, Y., Ramalingam, S., Feng, C.: Point-plane SLAM for hand-held 3D sensors. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5182–5189, May 2013

    Google Scholar 

  24. Trevor, A., Rogers, J., Christensen, H.: Planar surface SLAM with 3D and 2D sensors. In: IEEE International Conference Robotics Automation (ICRA), pp. 3041–3048, May 2012

    Google Scholar 

  25. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991)

    Article  Google Scholar 

  26. Vineet, V., et al.: Incremental dense semantic stereo fusion for large-scale semantic scene reconstruction. In: International Conference on Robotics and Automation, pp. 75–82 (2015)

    Google Scholar 

  27. Walker, M., Shao, L., Volz, R.: Estimating 3-D location parameters using dual number quaternions. CVGIP: Image Underst. 54(3), 358–367 (1991)

    Article  Google Scholar 

  28. Weingarten, J., Siegwart, R.: 3D SLAM using planar segments. In: IEEE/RSJ International Conference Intelligent Robots and Systems (IROS), pp. 3062–3067, October 2006

    Google Scholar 

  29. Zhang, Z., Faugeras, O.: Determining motion from 3D line segment matches: a comparative study. Image Vis. Comput. 9(1), 10–19 (1991)

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially supported by Polish National Science Center (NCN) under a research grant 2014/15/B/ST6/02808 as well as by PhD program of the Ministry of Science and Education of the Republic of Kazakhstan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Kwolek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gritsenko, P., Gritsenko, I., Seidakhmet, A., Kwolek, B. (2018). Plane Object-Based High-Level Map Representation for SLAM. In: Chmielewski, L., Kozera, R., Orłowski, A., Wojciechowski, K., Bruckstein, A., Petkov, N. (eds) Computer Vision and Graphics. ICCVG 2018. Lecture Notes in Computer Science(), vol 11114. Springer, Cham. https://doi.org/10.1007/978-3-030-00692-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00692-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00691-4

  • Online ISBN: 978-3-030-00692-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics