Abstract
In this paper, X-ray images are analysed by using the shape language. The algorithm combines syntactic and geometric approach. The geometric features of the contour are described by using syntactic approach. The points on the contour, where pathological changes can occur are localised effectively by the algorithm.
The work of the first author was supported by the AGH - University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection as a part of the statutory project.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Antani, S., Lee, D.J., Long, L.R., Thoma, G.R.: Evaluation of shape similarity measurement methods for spine X-ray images. J. Vis. Commun. Image Represent. 15, 285–302 (2004)
Aydin, S.Z., et al.: Limited reliability of radiographic assessment of spinal progression in ankylosing spondylitis. Rheumatology 56, 2162–2169 (2017)
Baraliakos, X., et al.: Progression of radiographic damage in patients with ankylosing spondylitis: defining the central role of syndesmophytes. Ann. Rheum. Dis. 66, 910–915 (2007)
Bielecka, M., Bielecki, A., Korkosz, M., Skomorowski, M., Wojciechowski, W., Zieliński, B.: Modified Jakubowski shape transducer for detecting osteophytes and erosions in finger joints. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011. LNCS, vol. 6594, pp. 147–155. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20267-4_16
Bielecka, M., Piórkowski, A.: Optimization of numerical calculations of geometric features of a curve describing preprocessed X-ray images of bones as a starting point for syntactic analysis of finger bone contours. In: Chmielewski, L.J., Datta, A., Kozera, R., Wojciechowski, K. (eds.) ICCVG 2016. LNCS, vol. 9972, pp. 365–376. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46418-3_32
Bielecka, M., Korkosz, M.: Generalized shape language application to detection of a specific type of bone erosion in X-ray images. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 531–540. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39378-0_45
Bielecki, A., Korkosz, M., Wojciechowski, W., Zieliński, B.: Identifying the borders of the upper and lower metacarpophalangeal joint surfaces on hand radiographs. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6113, pp. 589–596. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13208-7_73
Creemers, M., Franssen, M.J., van’t Hof, M.A., Gribnau, F.W., van de Putte, L.B., van Riel, P.L.: Assessment of outcome in ankylosing spondylitis: an extended radiographic scoring system. Ann. Rheum. Dis. 64, 127–129 (2005)
El Maghraoui, A., Bensabbah, R., Bahiri, R., Bezza, A., Guedira, N., Hajjaj-Hassouni, N.: Cervical spine involvement in ankylosing spondylitis. Clin. Rheumatol. 22, 94–98 (2003)
Flasiński, M.: Syntactic pattern recognition: paradigm issues and open problems. In: Chen, C.H. (ed.) Handbook of Pattern Recognition and Computer Vision, pp. 3–25. World Scientific, New Jersey-London-Singapore (2016)
Flasiński, M.: Introduction to Artificial Intelligence. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40022-8
Howe, B., Gururajan, A., Sari-Sarraf, A., Long, L.R.: Hierarchical segmentation of cervical and lumbar vertebrae using a customized generalized Hough transform and extensions to active appearance models. In: Proceedings of the 6th IEEE Southwest Symposium on Image Analysis and Interpretation (2004)
Jakubowski, R.: A structural representation of shape and its features. Inf. Sci. 39, 129–151 (1986)
Long, L.R., Thoma, G.R.: Use of shape models to search digitized spine X-rays. In: Proceedings of the 13th IEEE Symposium on Computer-Based Medical Systems, pp. 255–260 (2000)
Ogiela, M.R., Tadeusiewicz, R., Ogiela, L.: Image languages in intelligent radiological palm diagnostics. Pattern Recogn. 39, 2157–2165 (2006)
Piórkowski, A.: A statistical dominance algorithm for edge detection and segmentation of medical images. In: Piętka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Medicine. AISC, vol. 471, pp. 3–14. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39796-2_1
Sharp, J., Gardner, J., Bennett, E.: Computer-based methods for measuring joint space and estimating erosion volume in the finger and wrist joints of patients with rheumatoid arthritis. Arthritis Rheum. 43, 1378–1386 (2000)
Tadeusiewicz, R., Ogiela, M.R.: Medical Image Understanding Technology: Artificial Intelligence and Soft Computing for Image Understanding. Studies in Fuzziness and Soft Computing, vol. 156. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-40997-7
Tan, S., Wang, R., Ward, M.M.: Syndesmophyte growth in ankylosing spondylitis. Curr. Opin. Rheumatol. 27, 326–332 (2015)
Xu, X., Lee, D.J., Antani, S., Long, L.R.: A spine X-ray image retrieval system using partial shape matching. IEEE Trans. Inf. Technol. Biomed. 12, 100–108 (2008)
Xu, X., Lee, D.J., Antani, S., Long, L.R.: Localizing contour points for indexing an X-ray image retrieval system. In: Proceedings of the 16th IEEE Symposium on Computer-Based Medical Systems, New York, pp. 169–174, 26–27 June 2003
Zamora, G., Sari-Sarraf, H., Long, R.: Hierarchical segmentation of vertebrae from X-ray images. In: Proceedings of SPIE, Medical Imaging 2003: Image Processing, vol. 5032, p. 631 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Bielecka, M., Bielecki, A. (2018). Localizing Characteristic Points on a Vertebra Contour by Using Shape Language. In: Chmielewski, L., Kozera, R., Orłowski, A., Wojciechowski, K., Bruckstein, A., Petkov, N. (eds) Computer Vision and Graphics. ICCVG 2018. Lecture Notes in Computer Science(), vol 11114. Springer, Cham. https://doi.org/10.1007/978-3-030-00692-1_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-00692-1_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00691-4
Online ISBN: 978-3-030-00692-1
eBook Packages: Computer ScienceComputer Science (R0)