Abstract
Previous research has shown that automatically combining low-level behaviors into a probabilistic finite state machine produces control software that crosses the reality gap satisfactorily. In this paper, we explore the possibility of adopting behavior trees as an architecture for the control software of robot swarms. We introduce Maple: an automatic design method that combines preexisting modules into behavior trees. To highlight the potential of this control architecture, we present robot experiments in which we compare Maple with Chocolate and EvoStick on two missions: foraging and aggregation. Chocolate and EvoStick are two previously published automatic design methods. Chocolate is a modular method that generates probabilistic finite state machines and EvoStick is a traditional evolutionary robotics method. The results of the experiments indicate that behavior trees are a viable and promising architecture to automatically generate control software for robot swarms.
J. Kuckling and A. Ligot contributed equally to the research and should be considered co–first authors. Behavior trees were originally brought to the attention of the authors by DB. The proposed method was conceived by the four authors. It was implemented and tested by JK and AL. The initial draft of the manuscript was written by JK and AL and then revised by DB and MB. The research was directed by MB.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In biology this behavior is known as negative phototaxis [28].
References
Becroft, D., Bassett, J., Mejía, A., Rich, C., Sidner, C.L.: AIPaint: a sketch-based behavior tree authoring tool. In: Bulitko, V., Riedl, M.O. (eds.) Proceedings of the Seventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, AIIDE-11. AAAI Press, Stanford (2011)
Beni, G.: From swarm intelligence to swarm robotics. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 1–9. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1_1
Birattari, M.: On the estimation of the expected performance of a metaheuristic on a class of instances. How many instances, how many runs? Technical report TR/IRIDIA/2004-01, IRIDIA, Université libre de Bruxelles, Belgium (2004)
Bozhinoski, D., Birattari, M.: Designing control software for robot swarms: software engineering for the development of automatic design methods. In: ACM/IEEE 1st International Workshop on Robotics Software Engineering, RoSE, pp. 33–35. ACM, New York (2018). https://doi.org/10.1145/3196558.3196564
Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)
Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986)
Burridge, R.R., Rizzi, A.A., Koditschek, D.E.: Sequential composition of dynamically dexterous robot behaviors. Int. J. Robot. Res. 18(6), 534–555 (1999)
Champandard, A.J.: Understanding behavior trees (2007). http://aigamedev.com/open/articles/bt-overview/
Colledanchise, M., Ögren, P.: How behavior trees modularize hybrid control systems and generalize sequential behavior compositions, the subsumption architecture, and decision trees. IEEE Trans. Robot. 33(2), 372–389 (2017)
Colledanchise, M., Ögren, P.: Behavior trees in robotics and AI: an introduction (2018). https://arxiv.org/abs/1709.00084
Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463 (2014)
Duarte, M., Gomes, J., Costa, V., Oliveira, S.M., Christensen, A.L.: Hybrid control for a real swarm robotics system in an intruder detection task. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9598, pp. 213–230. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31153-1_15
Floreano, D., Husbands, P., Nolfi, S.: Evolutionary robotics. In: Siciliano, B., Khatib, O. (eds.) Handbook of Robotics, pp. 1423–1451. Springer, Heidelberg (2008)
Francesca, G., Birattari, M.: Automatic design of robot swarms: achievements and challenges. Front. Robot. AI 3(29), 1–9 (2016)
Francesca, G., et al.: AutoMoDe-chocolate: automatic design of control software for robot swarms. Swarm Intell. 9(2/3), 125–152 (2015)
Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe: a novel approach to the automatic design of control software for robot swarms. Swarm Intell. 8(2), 89–112 (2014)
Francesca, G., Brambilla, M., Trianni, V., Dorigo, M., Birattari, M.: Analysing an evolved robotic behaviour using a biological model of collegial decision making. In: Ziemke, T., Balkenius, C., Hallam, J. (eds.) SAB 2012. LNCS (LNAI), vol. 7426, pp. 381–390. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33093-3_38
Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., Birattari, M.: Software infrastructure for e-puck (and TAM). Technical report TR/IRIDIA/2015-004, IRIDIA, Université libre de Bruxelles, Belgium (2015)
Garattoni, L., Birattari, M.: Swarm robotics. In: Webster, J. (ed.) Wiley Encyclopedia of Electrical and Electronics Engineering. Wiley, Hoboken (2016). https://doi.org/10.1002/047134608X.W8312
Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., Magdalena, L.: Open E-puck range & bearing miniaturized board for local communication in swarm robotics. In: Kosuge, K. (ed.) IEEE International Conference on Robotics and Automation, ICRA, pp. 3111–3116. IEEE Press, Piscataway (2009)
Hasselmann, K., Ligot, A., Francesca, G., Birattari, M.: Reference models for AutoMoDe. Technical report TR/IRIDIA/2018-002, IRIDIA, Université libre de Bruxelles, Belgium (2018)
Hu, D., Gong, Y., Hannaford, B., Seibel, E.J.: Semi-autonomous simulated brain tumor ablation with Raven II surgical robot using behavior tree. In: Parker, L., et al. (eds.) IEEE International Conference on Robotics and Automation, ICRA, pp. 3868–3875. IEEE Press, Piscataway (2015)
Isla, D.: Handling complexity in the Halo 2 AI. In: GDC Proceeding (2005)
Jones, S., Studley, M., Hauert, S., Winfield, A.: Evolving behaviour trees for swarm robotics. In: 13th International Symposium on Distributed Autonomous Robotic Systems (DARS) (2016)
Kuckling, J., Ligot, A., Bozhinoski, D., Birattari, M.: Behavior trees as a control architecture in the automatic design of robot swarms: Supplementary material (2018). http://iridia.ulb.ac.be/supp/IridiaSupp2018-004/index.html
López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)
Marzinotto, A., Colledanchise, M., Smith, C., Ögren, P.: Towards a unified behavior trees framework for robot control. In: Xi, N., et al. (eds.) IEEE International Conference on Robotics and Automation, ICRA, pp. 5420–5427. IEEE Press, Piscataway (2014)
Menzel, R.: Spectral sensitivity and color vision in invertebrates. In: Autrum, H. (ed.) Comparative Physiology and Evolution of Vision in Invertebrates, pp. 503–580. Springer, Heidelberg (1979). https://doi.org/10.1007/978-3-642-66999-6_9
Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In: Gonçalves, P., Torres, P., Alves, C. (eds.) Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, pp. 59–65. Instituto Politécnico de Castelo Branco, Portugal (2009)
Nehaniv, C.L., Dautenhahn, K.: Imitation in Animals and Artifacts. MIT Press, Cambridge (2002)
Ögren, P.: Increasing modularity of UAV control systems using computer game behavior trees. In: Thienel, J., et al. (eds.) AIAA Guidance, Navigation, and Control Conference 2012, pp. 358–393. AIAA Meeting Papers (2012)
Perez, D., Nicolau, M., O’Neill, M., Brabazon, A.: Evolving behaviour trees for the mario AI competition using grammatical evolution. In: Di Chio, C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6624, pp. 123–132. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20525-5_13
Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012)
Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1_2
Spears, W.M., Spears, D., Hamann, J.C., Heil, R.: Distributed, physics-based control of swarms of vehicles. Auton. Robot. 17, 137–162 (2004)
Stranieri, A., et al.: IRIDIA’s arena tracking system. Technical report TR/IRIDIA/2013-013, IRIDIA, Université libre de Bruxelles, Belgium (2013)
Trianni, V.: Evolutionary Swarm Robotics. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-77612-3
Acknowledgements
The project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 681872). Mauro Birattari acknowledges support from the Belgian Fonds de la Recherche Scientifique – FNRS.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Kuckling, J., Ligot, A., Bozhinoski, D., Birattari, M. (2018). Behavior Trees as a Control Architecture in the Automatic Modular Design of Robot Swarms. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A., Reina, A., Trianni, V. (eds) Swarm Intelligence. ANTS 2018. Lecture Notes in Computer Science(), vol 11172. Springer, Cham. https://doi.org/10.1007/978-3-030-00533-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-00533-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00532-0
Online ISBN: 978-3-030-00533-7
eBook Packages: Computer ScienceComputer Science (R0)