Adaptive Sampling Frequency Synchronized Reference Generator for Grid Connected Power Converters | SpringerLink
Skip to main content

Adaptive Sampling Frequency Synchronized Reference Generator for Grid Connected Power Converters

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2018)

Abstract

This paper introduces a simplified method for digital generation of high-quality references required for control of single-phase grid-connected (GC) power converters, which can generate synchronized sinusoidal waveforms at the same frequency of the input signal or its harmonics. Therefore, its application can be useful for active power filtering, high power factor rectification, and grid integration of renewable energy sources. A hybrid analog-digital implementation is proposed integrating an Adaptive Sampling Frequency Moving Average Filter (ASF-MAF) and a discrete-time Proportional-Integral (PI) controller into a Digital Signal Processor (DSP) operating with a sampling frequency defined by an external hardware-based Voltage Controlled Oscillator (VCO). The main advantages attributed to the method are immunity to harmonic content, accuracy in computations despite of frequency changes, flexibility to produce phase displacements and reduced computational cost. Performance of the proposal was verified by means of simulation and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cirstea, M.N., Giamusi, M., McCormick, M.: A modern ASIC controller for a 6-pulse rectifier. In: Proceedings of 10th Annual IEEE International ASIC Conference and Exhibit, Portland, pp. 335–338 (1997)

    Google Scholar 

  2. Huber, L., Irving, B.T., Jovanovic, M.M.: Review and stability analysis of PLL-based interleaving control of DCM/CCM boundary boost PFC converters. IEEE Trans. Power Electron. 24(8), 1992–1999 (2009)

    Article  Google Scholar 

  3. Busada, C.A., Chiacchiarini, H.G., Balda, J.C.: Synthesis of sinusoidal waveform references synchronized with periodic signals. IEEE Trans. Power Electron. 23(2), 581–590 (2008)

    Article  Google Scholar 

  4. Hadjidemetriou, L., Yang, Y., Kyriakides, E., Blaabjerg, F.: A synchronization scheme for single-phase grid-tied inverters under harmonic distortion and grid disturbances. IEEE Trans. Power Electron. 32(4), 2784–2793 (2017)

    Article  Google Scholar 

  5. Hsieh, G.-C., Hung, J.C.: Phase-locked loop techniques: a survey. IEEE Trans. Ind. Electron. 43(6), 609–615 (1996)

    Article  Google Scholar 

  6. Zheng, L., Geng, H., Yang, G.: Fast and robust phase estimation algorithm for heavily distorted grid conditions. IEEE Trans. Ind. Electron. 63(11), 6845–6855 (2016)

    Article  Google Scholar 

  7. Lu, C., Zhou, Z., Jiang, A., Luo, M., Shen, P., Han, Y.: Comparative performance evaluation of phase-locked loop (PLL) algorithms for single-phase grid-connected converters. In: Proceedings of IEEE 8th International Power Electronics and Motion Control Conference, Hefei, pp. 902–907 (2016)

    Google Scholar 

  8. Ferreira, R. J., Araújo, R.E., Peças-Lopes, J.A.: A comparative analysis and implementation of various PLL techniques applied to single-phase grids. In: Proceedings of the 2011 3rd international Youth Conference Energetics (IYCE), Leiria, pp. 1–8 (2011)

    Google Scholar 

  9. Golestan, S., Guerrero, J.M., Vasquez, J.C.: Single-phase PLLs: a review of recent advances. IEEE Trans. Ind. Electron. 32(12), 9013–9030 (2017)

    Google Scholar 

  10. Zhang, Q., Sun, X.D., Zhong, Y.R., Matsui, M., Ren, B.Y.: Analysis and design of a digital phase-locked loop for single-phase grid-connected power conversion systems. IEEE Trans. Ind. Electron. 58(8), 3581–3592 (2011)

    Article  Google Scholar 

  11. Han, Y., Luo, M., Zhao, X., Guerrero, J.M., Xu, L.: Comparative performance evaluation of orthogonal-signal-generators-based single-phase PLL algorithms—a survey. IEEE Trans. Power Electron. 31(5), 3932–3944 (2016)

    Article  Google Scholar 

  12. Moreno, V.M., Liserre, M., Pigazo, A., Dell’Aquila, A.: A comparative analysis of real-time algorithms for power signal decomposition in multiple synchronous reference frames. IEEE Trans. Power Electron. 22(4), 1280–1289 (2007)

    Article  Google Scholar 

  13. Silva, S.M., Lopes, B.M., Filho, B.J.C., Campana, R.P., Bosventura, W.C.: Performance evaluation of PLL algorithms for single-phase grid-connected systems. In: Proceedings of IEEE Industry Applications Conference, vol. 4, pp. 2259–2263 (2014)

    Google Scholar 

  14. Golestan, S., Ramezani, J.M., Gerrero, J.M., Freijedo, F.D., Monfared, M.: Moving average filter based phase-look loops: performance analysis and design guidelines. IEEE Trans. Power Electron. 29(6), 2750–2763 (2014)

    Article  Google Scholar 

  15. Wang, J., Liang, J., Gao, F., Zhang, L., Wang, Z.: A method to improve the dynamic performance of moving average filter based PLL. IEEE Trans. Power Electron. 30(10), 5978–5990 (2015)

    Article  Google Scholar 

  16. Golestan, S., Guerrero, J.M., Vasquez, J.C.: Nonadaptive window-based PLL for single-phase applications. IEEE Trans. Power Electron. 33(1), 24–31 (2018)

    Article  Google Scholar 

  17. Wang, L., Jiang, Q., Hong, L., Zhang, C., Wei, Y.: A novel phase-locked loop based on frequency detector and initial phase angle detector. IEEE Trans. Power Electron. 28(10), 4538–4549 (2013)

    Article  Google Scholar 

  18. Fairchild Semiconductor: CD4046: Micropower Phase-Locked Loop, pp. 1–14 (2002)

    Google Scholar 

  19. Texas Instruments: Digital Phase-Locked Loop Using SN54/74LS297, pp. 1–19 (1997)

    Google Scholar 

  20. Lopez-Santos, O., Garcia, G., Avila-Martinez, J.C., Gonzalez-Morales, D. F., Toro-Zuluaga, C.: A simple digital sinusoidal reference generator for grid-synchronized power electronics applications. In: Proceedings of IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), Bogota, pp. 1–6 (2015)

    Google Scholar 

  21. Lopez-Santos, O., Garcia, G., Martinez-Salamero, L., Avila-Martinez, J.C., Seguier, L.: Non-linear control of the output stage of a solar microinverter. Int. J. Control 90(1), 90–109 (2017)

    Article  MathSciNet  Google Scholar 

  22. Lopez-Santos, O., Tilaguy-Lezama, S., Rico-Ramirez, S.P., Cortes-Torres, L.: Operation of a photovoltaic microinverter as active power filter using the single phase P-Q theory and sliding mode control. Ingeniería 22(2), 254–268 (2017)

    Article  Google Scholar 

  23. Lopez-Santos, O., Cortes-Torres, L., Tilaguy-Lezama, S.: Discrete time nested-loop controller for the output stage of a photovoltaic microinverter. In: Figueroa-García, J.C., López-Santana, E.R., Ferro-Escobar, R. (eds.) WEA 2016. CCIS, vol. 657, pp. 320–331. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50880-1_28

    Chapter  Google Scholar 

  24. Ye, T., Dai, N., Lam, C.S., Wong, M.C., Guerrero, J.M.: Analysis, design, and implementation of a quasi-proportional-resonant controller for a multifunctional capacitive-coupling grid-connected inverter. IEEE Trans. Ind. Appl. 52(5), 4269–4280 (2016)

    Article  Google Scholar 

  25. Texas Instruments: TMS320x2833x, 2823x enhanced pulse width modulator (ePWM) module (2009)

    Google Scholar 

  26. Texas Instruments: TMS320x2833x, 2823x reference guide: system control and interrupts (2010)

    Google Scholar 

  27. Texas Instruments: TMS320x2833x, analog-to-digital converter (ADC) module (2007)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Universidad de Ibagué under project #14-315-INT, Gobernación del Tolima under Convenio de cooperación 1026- 2013, project #16-406-INT, and Departamento Nacional de Ciencia, Tecnología e Innovación COLCIENCIAS under contract CT 018-2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oswaldo Lopez-Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lopez-Santos, O., Tilaguy-Lezama, S., Garcia, G. (2018). Adaptive Sampling Frequency Synchronized Reference Generator for Grid Connected Power Converters. In: Figueroa-García, J., López-Santana, E., Rodriguez-Molano, J. (eds) Applied Computer Sciences in Engineering. WEA 2018. Communications in Computer and Information Science, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-00350-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00350-0_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00349-4

  • Online ISBN: 978-3-030-00350-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics