Abstract
Problem: A number of technologies has been developed aiming at improving the availability, opportunity, difficulty of access or efficiency of epilepsy diagnosis based on Electroencephalogram (EEG) data. However, these approaches are not all based on open technologies, neither are they integrated into Electronic Health Record information (EHR) systems to support continuity of care. Objective: To develop an open source EHR system for the management of patient’s information, encounter scheduling, remote registration, and subsequent analysis of EEG data. Methods: The analysis, design, and implementation of the system followed the Scrum framework. The implementation was based on an open source platform for EHR systems named OpenMRS. Results: NeuroEHR supports the provision of Tele-EEG services, integrates patient’s clinical information, and EEG data captured remotely from an EEG device, stores the data in an EEG repository, and allows a neurologist to provide a diagnosis based on clinical and EEG data. Conclusions: The NeuroEHR system is currently being used in the context of the NeuroMoTIC project, in which a pediatric EEG data set is being created and annotated, and some Artificial Intelligence algorithms are being tested to support a telehealth service for the diagnosis of epilepsy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Computer Software developed by Neurovirtual, which is distributed with the BWII-EEG device.
- 2.
FDA certified Medical device for the recording of EEG signals.
References
Mental health: strengthening our response. http://www.who.int/mediacentre/factsheets/fs220/en. Accessed 13 Apr 2018
Diez Datos sobre la salud mental. http://www.who.int/features/factfiles/mental_health/mental_health_facts/es/index9.html. Accessed 13 Apr 2018
Ministerio de Salud y Protección Social: Guía de Práctica Clínica (GPC) para la prevención, diagnóstico, tratamiento y rehabilitación de los Pacientes con Epilepsia en el Contexto Colombiano, Bogotá, Colombia (2013)
Velez, A., Eslava-Cobos, J.: Epilepsy in Colombia: epidemiologic profile and classification of epileptic seizures and syndromes. Epilepsia 47, 193–201 (2006)
Amaya, J., et al.: Estudio de disponibilidad y distribución de la oferta de médicos especialistas, en servicios de alta y mediana complejidad en Colombia. Doc. técnico GPES/1682C-13. Dispon. en (2013). https://www.minsalud.gov.co/salud/Documents/Observatorio%20Talento%20Humano%20en%20Salud/DisponibilidadDistribuci%C3%B3nMdEspecialistasCendex.pdf
Campos, C., et al.: Setting up a telemedicine service for remote real-time video-EEG consultation in La Rioja (Spain). Int. J. Med. Inform. 81, 404–414 (2012)
Celi, L.A., Sarmenta, L., Rotberg, J., Marcelo, A., Clifford, G.: Mobile care (moca) for remote diagnosis and screening. J. Health Inform. Dev. Ctries. 3, 17 (2009)
Insuasty, D.F., Ceron, R.E., López, D.M.: A mobile system for the collection of clinical data and EEG signals by using the sana platform. Stud. Health Technol. Inform. 200, 116–123 (2014)
Townsend, B., Abawajy, J., Kim, T.-H.: SMS-based medical diagnostic telemetry data transmission protocol for medical sensors. Sensors 11, 4231–4243 (2011)
Shoeder, N.M., Gaona Barbosa, I.A., Rodriguez Velásquez, N., Vergara, J.P.: Teleneurología para el seguimiento de pacientes epilépticos prueba piloto en el Hospital de San José. Bogotá DC, Colombia. Reper. Med. Cir. 21, 285–290 (2012)
Borja, G., Ortega, T., Romero, A.: Diseño e implementación de un equipo para la adquisición y visualización en pc de señales electroencefalográficas. PROSPECTIVA 8, 21–28 (2010)
Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall, Upper Saddle River (2002)
Wolfe, B.A., et al.: The OpenMRS system: collaborating toward an open source EMR for developing countries. In: AMIA Annual Symposium Proceedings, pp. 1146–1146 (2006)
Sjøberg, D.I.: Guide to Advanced Empirical Software Engineering. Springer, Alemania (2008). https://doi.org/10.1007/978-1-84800-044-5
Proyecto NeuroMoTIC, https://neuromotic.unicauca.edu.co/. Accessed 13 Apr 2018
Mera-Gaona, M., Vargas-Canas, R., Lopez, D.M.: Towards a selection mechanism of relevant features for automatic epileptic seizures detection. Stud. Health Technol. Inform. 228, 722–726 (2016)
Acknowledgements
The work is funded by a grant from the Colombian Agency for Science, Technology, and Innovation Colciencias – under Call 715- 2015- “Convocatoria para Proyectos de Investigación y Desarrollo en Ingenierias”, project: “NeuroMoTIC: Sistema móvil para el Apoyo Diagnóstico de la Epilepsia”, Contract number FP44842-154-2016.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Molina, E., Salazar-Cabrera, R., López, D.M. (2018). NeuroEHR: Open Source Telehealth System for the Management of Clinical Data, EEG and Remote Diagnosis of Epilepsy. In: Figueroa-García, J., López-Santana, E., Rodriguez-Molano, J. (eds) Applied Computer Sciences in Engineering. WEA 2018. Communications in Computer and Information Science, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-00350-0_35
Download citation
DOI: https://doi.org/10.1007/978-3-030-00350-0_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00349-4
Online ISBN: 978-3-030-00350-0
eBook Packages: Computer ScienceComputer Science (R0)