A Markov-Monte Carlo Simulation Model to Support Urban Planning Decisions: A Case Study for Medellín, Colombia | SpringerLink
Skip to main content

A Markov-Monte Carlo Simulation Model to Support Urban Planning Decisions: A Case Study for Medellín, Colombia

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 915))

Included in the following conference series:

  • 1147 Accesses

Abstract

The identification of properties and land destinations are key factors in urban planning decisions, especially in rapid-growing urbanized cities. This information is vital for cadaster matters, property taxes calculations, and therefore for the financial sustainability of a city. In this work we present a Markov-Monte Carlo simulation model to predict changes in land destinations. First, a Markov chain is established to identify the transition finite-state matrix of property destinations, and then a Monte Carlo simulation model is used to predict the changes. We present a case study for the city of Medellín, Colombia, using historical information from the cadaster office from 2004 to 2016. Results obtained allow identifying the urban areas with the larger number of changes. Moreover, these results provide support for urban planning decisions related to workforce sizing and visits sequences to the identified areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berrio Marín, J.A.: Noventa Años De Historia De Catastro Medellín. In: Comité Permanente sobre el Catastro en Iberoamérica (CPCI) (ed.) IX Simposio sobre el Catastro en Iberoamérica, del Comité Permanente del Catastro en Iberoamérica (CPCI) y Celebración 90 años de Catastro Medellín, p. 36. Comité Permanente sobre el Catastro en Iberoamérica (CPCI), IX Simposio sobre el Catastro en Iberoamérica, del Comité Permanente del Catastro en Iberoamérica (CPCI) y Celebración 90 años de Catastro Medellín., Medellin, Colombia (2016). https://www.medellin.gov.co/irj/go/km/docs/pccdesign/medellin/Temas/Catastro/Publicaciones/SharedContent/Documentos/2016/IXSimposioCatastro/4M90AnosCatastroMedellinALBERTOBERRIOMARIN.pdf

  2. Casella, G., George, E.I.: Explaining the Gibbs sampler. Am. Stat. 46(3), 167–174 (1992)

    MathSciNet  Google Scholar 

  3. Chib, S., Greenberg, E.: Understanding the metropolis-hastings algorithm. Am. Stat. 49(4), 327–335 (1995)

    Google Scholar 

  4. Concejo de Medellín: Acuerdo 66 de 2017: Estatuto tributario (2017). https://www.medellin.gov.co/irj/go/km/docs/pccdesign/medellin/Temas/Hacienda/Normas/SharedContent/Documentos/2017/Acuerdo066de2017-Medellin.pdf

  5. Congreso de Colombia: Ley 14 de 1983 (1983)

    Google Scholar 

  6. Cowles, M.K., Carlin, B.P.: Markov chain Monte Carlo convergence diagnostics: a comparative review. J. Am. Stat. Assoc. 91(434), 883–904 (1996). http://links.jstor.org/sici?sici=0162-1459%28199606%2991%3A434%3C883%3AMCMCCD%3E2.0.CO%3B2-X

    Article  MathSciNet  Google Scholar 

  7. DANE: Series de Población, Reloj Estadistico. Technical report, Departamento Administrativo Nacional de Estadística (DANE) (2016). http://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/series-de-poblacion

  8. DAP, D.A.d.P.: Acuerdo 48: Plan de ordenamiento territorial de Medellín POT - 2014 (2014). https://www.medellin.gov.co/irj/portal/ciudadanos?NavigationTarget=navurl://474b42d2a001a412ed3117d306a43135

  9. Gelman, A., Rubin, D.B.: Inference from iterative simulation using multiple sequences. Stat. Sci. 7(4), 457–511 (1992)

    Article  Google Scholar 

  10. Geyer, C.J.: Markov chain monte carlo lecture notes. Course notes, Spring Quarter (1998)

    Google Scholar 

  11. Geyer, C.J.: Markov Chain Monte Carlo Lecture Notes (2005)

    Google Scholar 

  12. Gilks, W.R., Richardson, S., Spiegelhalter, D.: Markov Chain Monte Carlo in Practice. CRC Press, Boca Raton (1995)

    Book  Google Scholar 

  13. Grant, J., Tsenkova, S.: New Urbanism and Smart Growth Movements. Elsevier (2012)

    Google Scholar 

  14. Green, D.K.: Efficient Markov chain Monte Carlo for combined subset simulation and nonlinear finite element analysis. Comput. Methods Appl. Mech. Eng. 313, 337–361 (2017)

    Article  MathSciNet  Google Scholar 

  15. Hillier, F.S., Lieberman, G.J.: Introduction to Operations Research, 9th edn. McGraw-Hill, New York (2010)

    MATH  Google Scholar 

  16. IGAC: Resolución 070 De 2011 (2011)

    Google Scholar 

  17. Kass, R.E., Carlin, B.P., Gelman, A., Neal, R.M.: Markov chain Monte Carlo in practice: a roundtable discussion. Am. Stat. 52(2), 93–100 (1998). http://www.tandfonline.com/doi/abs/10.1080/00031305.1998.10480547

    MathSciNet  Google Scholar 

  18. Lee, H.K.H.: Bayesian methods: a social and behavioral sciences approach. Am. Stat. 62(4), 356 (2008). http://www.tandfonline.com/doi/abs/10.1198/000313008X370915

    Article  Google Scholar 

  19. Magnussen, S.: A Markov chain Monte Carlo approach to joint simulation of regional areas burned annually in canadian forest fires. Comput. Electron. Agric. 66(2), 173–180 (2009)

    Article  Google Scholar 

  20. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 4, 308–320 (1976)

    Article  MathSciNet  Google Scholar 

  21. Muller, M.R., Middleton, J.: A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landsc. Ecol. 9(2), 151–157 (1994)

    Google Scholar 

  22. Peltonen, J., Venna, J., Kaski, S.: Visualizations for assessing convergence and mixing of Markov chain Monte Carlo simulations. Comput. Stat. Data Anal. 53(12), 4453–4470 (2009)

    Article  MathSciNet  Google Scholar 

  23. Raftery, A.E., Lewis, S.: How many iterations in the Gibbs sampler? In: Bayesian Statistics, pp. 763–773 (1992)

    Google Scholar 

  24. Reveshty, M.A.: The assessment and predicting of land use changes to urban area using multi-temporal satellite imagery and gis: a case study on Zanjan, iran (1984–2011). J. Geogr. Inf. Syst. 3(04), 298 (2011)

    Google Scholar 

  25. Schwarz, N., Flacke, J., Sliuzas, R.: Modelling the impacts of urban upgrading on population dynamics. Environ. Model. Softw. 78, 150–162 (2016). http://dx.doi.org/10.1016/j.envsoft.2015.12.009

    Article  Google Scholar 

  26. Sobol, I.: A Primer for the Monte Carlo Method. Taylor & Francis, London (1994). https://books.google.com.co/books?id=P5jWKfR91OkC

    MATH  Google Scholar 

  27. Wey, W.M., Hsu, J.: New urbanism and smart growth: toward achieving a smart National Taipei University District. Habitat Int. 42, 164–174 (2014)

    Article  Google Scholar 

  28. Xia, H., Liu, H., Zheng, C.: A Markov-Kalman model of land-use change prediction in XiuHe Basin, China. In: Bian, F., Xie, Y., Cui, X., Zeng, Y. (eds.) GRMSE 2013. CCIS, vol. 399, pp. 75–85. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41908-9_8

    Chapter  Google Scholar 

  29. Zhang, J., Tang, W.H., Zhang, L., Huang, H.: Characterising geotechnical model uncertainty by hybrid Markov chain Monte Carlo simulation. Comput. Geotech. 43, 26–36 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Subsecretaría de Catastro of Medellín, for providing the necessary information for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián Andrés Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castillo, J.A., Ceballos, Y.F., Gutiérrez, E.V. (2018). A Markov-Monte Carlo Simulation Model to Support Urban Planning Decisions: A Case Study for Medellín, Colombia. In: Figueroa-García, J., López-Santana, E., Rodriguez-Molano, J. (eds) Applied Computer Sciences in Engineering. WEA 2018. Communications in Computer and Information Science, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-00350-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00350-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00349-4

  • Online ISBN: 978-3-030-00350-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics