Connected Vertex Cover for  $$(sP_1+P_5)$$ -Free Graphs | SpringerLink
Skip to main content

Connected Vertex Cover for \((sP_1+P_5)\)-Free Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11159))

Included in the following conference series:

Abstract

The Connected Vertex Cover problem is to decide if a graph G has a vertex cover of size at most k that induces a connected subgraph of G. This is a well-studied problem, known to be NP-complete for restricted graph classes, and, in particular, for H-free graphs if H is not a linear forest. On the other hand, the problem is known to be polynomial-time solvable for \(sP_2\)-free graphs for any integer \(s\ge 1\). We prove that it is also polynomial-time solvable for \((sP_1+P_5)\)-free graphs for every integer \(s\ge ~0\).

This work was supported by The Leverhulme Trust (Grant RPG-2016-258).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bacsó, G., Tuza, Zs.: Dominating cliques in \(P_5\)-free graphs, Periodica Mathematica Hungarica 21, 303–308 (1990)

    Google Scholar 

  2. Balas, E., Yu, C.S.: On graphs with polynomially solvable maximum-weight clique problem. Networks 19, 247–253 (1989)

    Article  MathSciNet  Google Scholar 

  3. Camby, E., Cardinal, J., Fiorini, S., Schaudt, O.: The price of connectivity for vertex cover. Discret. Math. Theor. Comput. Sci. 16, 207–224 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Camby, E., Schaudt, O.: A new characterization of \(P_k\)-free graphs. Algorithmica 75, 205–217 (2016)

    Article  MathSciNet  Google Scholar 

  5. Cardinal, J., Levy, E.: Connected vertex covers in dense graphs. Theor. Comput. Sci. 411, 2581–2590 (2010)

    Article  MathSciNet  Google Scholar 

  6. Chiarelli, N., Hartinger, T.R., Johnson, M., Milanic, M., Paulusma, D.: Minimum connected transversals in graphs: new hardness results and tractable cases using the price of connectivity. Theor. Comput. Sci. 705, 75–83 (2018)

    Article  MathSciNet  Google Scholar 

  7. Escoffier, B., Gourvès, L., Monnot, J.: Complexity and approximation results for the connected vertex cover problem in graphs and hypergraphs. Theor. Comput. Sci. 8, 36–49 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Fernau, H., Manlove, D.: Vertex and edge covers with clustering properties: complexity and algorithms. J. Discret. Algorithms 7, 149–167 (2009)

    Article  MathSciNet  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math. 32, 826–834 (1977)

    Article  MathSciNet  Google Scholar 

  10. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Theory, Ser. B 16, 47–56 (1974)

    Article  MathSciNet  Google Scholar 

  11. Grzesik, A., Klimošová, T., Pilipczuk, M., Pilipczuk, M.: Polynomial-time algorithm for maximum weight independent set on \(P_6\)-free graphs. Manuscript (2017)

    Google Scholar 

  12. Hartinger, T.R., Johnson, M., Milanic, M., Paulusma, D.: The price of connectivity for transversals. Eur. J. Comb. 58, 203–224 (2016)

    Article  MathSciNet  Google Scholar 

  13. Li, Y., Yang, Z., Wang, W.: Complexity and algorithms for the connected vertex cover problem in 4-regular graphs. Appl. Math. Comput. 301, 107–114 (2017)

    MathSciNet  Google Scholar 

  14. Lokshtanov, D., Vatshelle, M., Villanger, Y.: Independent set in \(P_5\)-free graphs in polynomial time. In: Proceedings of SODA 2014, pp. 570–581 (2014)

    Google Scholar 

  15. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb. Theory, Ser. B 28, 284–304 (1980)

    Article  MathSciNet  Google Scholar 

  16. Munaro, A.: Boundary classes for graph problems involving non-local properties. Theor. Comput. Sci. 692, 46–71 (2017)

    Article  MathSciNet  Google Scholar 

  17. Poljak, S.: A note on stable sets and colorings of graphs. Commentationes Mathematicae Universitatis Carolinae 15, 307–309 (1974)

    MathSciNet  MATH  Google Scholar 

  18. Priyadarsini, P.K., Hemalatha, T.: Connected vertex cover in 2-connected planar graph with maximum degree 4 is NP-complete. Int. J. Math. Phys. Eng. Sci. 2, 51–54 (2008)

    Google Scholar 

  19. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6, 505–517 (1977)

    Article  MathSciNet  Google Scholar 

  20. Sbihi, N.: Algorithme de recherche d’un stable de cardinalité maximum dans un graphe sans étoile. Discret. Math. 29, 53–76 (1980)

    Article  MathSciNet  Google Scholar 

  21. Ueno, S., Kajitani, Y., Gotoh, S.: On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three. Discret. Math. 72, 355–360 (1988)

    Article  MathSciNet  Google Scholar 

  22. Wanatabe, T., Kajita, S., Onaga, K.: Vertex covers and connected vertex covers in 3-connected graphs. In: Proceedings of IEEE ISCAS 1991, pp. 1017–1020 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Paesani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Johnson, M., Paesani, G., Paulusma, D. (2018). Connected Vertex Cover for \((sP_1+P_5)\)-Free Graphs. In: Brandstädt, A., Köhler, E., Meer, K. (eds) Graph-Theoretic Concepts in Computer Science. WG 2018. Lecture Notes in Computer Science(), vol 11159. Springer, Cham. https://doi.org/10.1007/978-3-030-00256-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00256-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00255-8

  • Online ISBN: 978-3-030-00256-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics