Scoring and Validation of Tandem MS Peptide Identification Methods | SpringerLink
Skip to main content

Scoring and Validation of Tandem MS Peptide Identification Methods

  • Protocol
  • First Online:
Proteome Bioinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 604))

Abstract

A variety of methods are described in the literature to assign peptide sequences to observed tandem MS data. Typically, the identified peptides are associated only with an arbitrary score that reflects the quality of the peptide-spectrum match but not with a statistically meaningful significance measure. In this chapter, we discuss why statistical significance measures can simplify and unify the interpretation of MS-based proteomic experiments. In addition, we also present available software solutions that convert scores into sound statistical measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
JPY 5480
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 20734
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Godoy, L.M., Olsen, J.V., de Souza, G.A., Li, G., Mortensen, P., and Mann, M. (2006) Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system. Genome Biol, 7(6), R50.

    Article  PubMed  Google Scholar 

  2. McCormack, A.L., Schieltz, D.M., Goode, B., Yang, S., Barnes, G., Drubin, D., and Yates, J.R. III. (1997) Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level. Anal Chem, 69(4), 767-776.

    Article  CAS  PubMed  Google Scholar 

  3. Nesvizhskii, A.I., Vitek, O., and Aebersold, R. (2007) Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat Meth, 4(10), 787-797.

    Article  CAS  Google Scholar 

  4. Eng, J.K., McCormack, A.L., and Yates, J.R. (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom, 5(11), 976-989.

    Article  CAS  Google Scholar 

  5. Perkins, D.N., Pappin, D.J., Creasy, D.M., and Cottrell, J.S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20(18), 3551-3567.

    Article  CAS  PubMed  Google Scholar 

  6. Craig, R., and Beavis, R.C. (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics, 20(9), 1466-1467.

    Article  CAS  PubMed  Google Scholar 

  7. States, D.J., Omenn, G.S., Blackwell, T.W., Fermin, D., Eng, J., Speicher, D.W., and Hanash, S.M. (2006) Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study. Nat Biotechnol, 24(3), 333-338.

    Article  CAS  PubMed  Google Scholar 

  8. Benjamini, Y., and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B, 57(1), 289-300.

    Google Scholar 

  9. Storey, J. D., and Tibshirani, R. (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA, 100(16), 9440-9445.

    Article  CAS  PubMed  Google Scholar 

  10. Käll, L., Storey, J.D., MacCoss, M.J., and Noble, W.S. (2008) Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. J Proteome Res, 7(1), 29-34.

    Article  PubMed  Google Scholar 

  11. Käll, L., Storey, J.D., MacCoss, M.J., and Noble, W.S. (2008) Posterior error probabilities and false discovery rates: two sides of the same coin. J Proteome Res, 7(1), 40-44.

    Article  PubMed  Google Scholar 

  12. Käll, L., Storey, J.D., and Noble, W.S. (2008) Nonparametric estimation of posterior error probabilities associated with peptides identified by tandem mass spectrometry. Bioinfor­matics, 24(16), i42-i48.

    Article  PubMed  Google Scholar 

  13. Keller, A., Nesvizhskii, A.I., Kolker, E., and Aebersold, R. (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem, 74(20), 5383-5392.

    Article  CAS  PubMed  Google Scholar 

  14. Moore, R.E., Young, M.K., and Lee, T.D. (2002) Qscore: an algorithm for evaluating SEQUEST database search results. J Am Soc Mass Spectrom, 13(4), 378-386.

    Article  CAS  PubMed  Google Scholar 

  15. Fitzgibbon, M., Li, Q., and McIntosh, M. (2007) Modes of inference for evaluating the confidence of peptide identifications. J. Proteome Res, 7(1), 35-39.

    Article  PubMed  Google Scholar 

  16. Brosch, M., Swamy, S., Hubbard, T., and Choudhary, J. (2008) Comparison of Mascot and X!Tandem performance for low and high accuracy mass spectrometry and the development of an adjusted Mascot threshold. Mol Cell Proteomics, 7(5), 962-970.

    Article  CAS  PubMed  Google Scholar 

  17. Choi, H., and Nesvizhskii, A.I. (2008) Semisupervised model-based validation of peptide identifications in mass spectrometry-based proteomics. J Proteome Res, 7(1), 254-265.

    Article  CAS  PubMed  Google Scholar 

  18. Choi, H., Ghosh, D., and Nesvizhskii, A.I. (2008) Statistical validation of peptide identifications in large-scale proteomics using the target-decoy database search strategy and ­flexible mixture modeling. J Proteome Res, 7(1), 286-292.

    Article  CAS  PubMed  Google Scholar 

  19. Käll, L., Canterbury, J.D., Weston, J., Noble, W.S., and MacCoss, M. J. (2007) Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods, 4(11), 923-925.

    Article  PubMed  Google Scholar 

  20. Brosch, M., Yu, L., Hubbard, T., and Choudhary, J. (2009) Accurate and sensitive peptide identification with Mascot Percolator. J Proteome Res, 8(6), 3176-3181.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Choudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Brosch, M., Choudhary, J. (2010). Scoring and Validation of Tandem MS Peptide Identification Methods. In: Hubbard, S., Jones, A. (eds) Proteome Bioinformatics. Methods in Molecular Biology™, vol 604. Humana Press. https://doi.org/10.1007/978-1-60761-444-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-444-9_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-443-2

  • Online ISBN: 978-1-60761-444-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics