Years and Authors of Summarized Original Work
-
2005; Choy, Jansson, Sadakane, Sung
-
2010; Della Vedova, Dondi, Jiang, Pavesi, Pirola, Wang
-
2011; Tofigh, Hallett, Lagergren
-
2011; van Iersel, Kelk
-
2014; Kelk, Scornavacca
Problem Definition
Recent developments in phylogenetics have provided evidences that evolutionary histories cannot always be represented as a single tree; thus, more sophisticated representations are needed. Phylogenetic networks are natural extensions of phylogenetic trees that recently gathered general consensus in literature. Let \(\varLambda\) be a finite set of labels, representing a set of extant species (taxa). A rooted phylogenetic N over\(\varLambda\) (or, simply, phylogenetic network or network) is a directed acyclic connected graph \(N =\langle V (N),A(N)\rangle\) containing a unique vertex with no incoming arcs, called root of N, and a labeling function from the set L(N) of leaves of N to the set of labels \(\varLambda\). The set of labels associated with the...
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Recommended Reading
Bansal MS, Alm EJ, Kellis M (2012) Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28(12):283–291. doi:10.1093/bioinformatics/ bts225
Bonizzoni P, Della Vedova G, Dondi R (2005) Reconciling a gene tree to a species tree under the duplication cost model. Theor Comput Sci 347(1–2):36–53. doi:10.1016/j.tcs.2005.05.016
Burleigh JG, Bansal MS, Wehe A, Eulenstein O (2008) Locating multiple gene duplications through reconciled trees. In: Proceedings of the 12th annual international conference on research in computational molecular biology, RECOMB 2008, Singapore. LNCS, vol 4955. Springer, pp 273–284. doi:10.1007/978-3-540-78839-3_24
Chang WC, Eulenstein O (2006) Reconciling gene trees with apparent polytomies. In: Proceedings of the 12th annual international conference on computing and combinatorics, COCOON 2006, Taipei. LNCS, vol 4112. Springer, pp 235–244. doi:10.1007/11809678_26
Chauve C, El-Mabrouk N (2009) New perspectives on gene family evolution: losses in reconciliation and a link with supertrees. In: Proceedings of the 13th annual international conference on research in computational molecular biology, RECOMB 2009, Tucson. LNCS, vol 5541. Springer, pp 46–58. doi:10.1007/978-3-642-02008-7_4
Choy C, Jansson J, Sadakane K, Sung WK (2005) Computing the maximum agreement of phylogenetic networks. Theor Comput Sci 335(1):93–107. doi:10.1016/j.tcs.2004.12.012
Della Vedova G, Dondi R, Jiang T, Pavesi G, Pirola Y, Wang L (2010) Beyond evolutionary trees. Nat Comput 9(2):421–435. doi:10.1007/s11047-009-9156-6
Gambette P, Berry V, Paul C (2012) Quartets and unrooted phylogenetic networks. J Bioinform Comput Biol 10(4). doi:10.1142/S0219720012500047
Goodman M, Czelusniak J, Moore GW, Romero-Herrera AE, Matsuda G (1979) Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst Zool 28(2):132–163. doi:10.1093/sysbio/28.2.132
Gòrecki P (2004) Reconciliation problems for duplication, loss and horizontal gene transfer. In: Proceedings of the 8th annual international conference on computational molecular biology, RECOMB 2004, San Diego. ACM, pp 316–325. doi:10.1145/974614.974656
Gòrecki P, Tiuryn J (2006) DLS-trees: a model of evolutionary scenarios. Theor Comput Sci 359(1–3):378–399. doi:10.1016/j.tcs.2006.05.019
Guigò R, Muchnik I, Smith T (1996) Reconstruction of ancient molecular phylogeny. Mol Phylogenet Evol 6(2):189–213. doi:10.1006/mpev.1996.0071
Gusfield D, Eddhu S, Langley CH (2004) Optimal, efficient reconstruction of phylogenetic networks with constrained recombination. J Bioinform Comput Biol 2(1):173–214. doi:10.1142/S0219720004000521
Habib M, To TH (2012) Constructing a minimum phylogenetic network from a dense triplet set. J Bioinform Comput Biol 10(5). doi:10.1142/S0219720012500138
Huson DH, Klöpper TH (2007) Beyond galled trees – decomposition and computation of galled networks. In: Proceedings of the 11th annual international conference on research in computational molecular biology, RECOMB 2007, Oakland. LNCS, vol 4453. Springer, pp 211–225. doi:10.1007/978-3-540-71681-5_15
Huson DH, Rupp R (2008) Summarizing multiple gene trees using cluster networks. In: Proceedings of the 8th international workshop on algorithms in bioinformatics, WABI 2008, Karlsruhe. LNCS, vol 5251. Springer, pp 296–305. doi:10.1007/978-3-540-87361-7_25
Jansson J, Sung WK (2004) The maximum agreement of two nested phylogenetic networks. In: Proceedings of the 15th international symposium on algorithms and computation, ISAAC 2004, Hong Kong. LNCS, vol 3341. Springer, pp 581–593. doi:10.1007/978-3-540-30551-4_51
Jansson J, Nguyen NB, Sung WK (2006) Algorithms for combining rooted triplets into a galled phylogenetic network. SIAM J Comput 35(5):1098–1121. doi:10.1137/S0097539704446529
Kelk S, Scornavacca C (2014) Constructing minimal phylogenetic networks from softwired clusters is fixed parameter tractable. Algorithmica 68(4):886–915. doi:10.1007/s00453-012-9708-5
Libeskind-Hadas R, Charleston MA (2009) On the computational complexity of the reticulate cophylogeny reconstruction problem. J Comput Biol 16(1):105–117. doi:10.1089/ cmb.2008.0084
Ma B, Li M, Zhang L (2000) From gene trees to species trees. SIAM J Comput 30(3):729–752. doi:10.1137/S0097539798343362
Ovadia Y, Fielder D, Conow C, Libeskind-Hadas R (2011) The cophylogeny reconstruction problem is NP-complete. J Comput Biol 18(1):59–65. doi:10.1089/cmb.2009.0240
Page R (1994) Maps between trees and cladistic analysis of historical associations among genes. Syst Biol 43(1):58–77. doi:10.1093/sysbio/43.1.58
To TH, Habib M (2009) Level-k phylogenetic networks are constructable from a dense triplet set in polynomial time. In: Proceedings of the 20th annual symposium on combinatorial pattern matching, CPM 2009, Lille. LNCS, vol 5577. Springer, pp 275–288. doi:10.1007/978-3-642-02441-2_25
Tofigh A, Hallett MT, Lagergren J (2011) Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans Comput Biol Bioinform 8(2):517–535. doi:10.1109/TCBB.2010.14
van Iersel L, Kelk S (2011) Constructing the simplest possible phylogenetic network from triplets. Algorithmica 60(2):207–235. doi:10.1007/s00453-009-9333-0
van Iersel L, Keijsper J, Kelk S, Stougie L, Hagen F, Boekhout T (2009) Constructing level-2 phylogenetic networks from triplets. IEEE/ACM Trans Comput Biol Bioinform 6(4):667–681. doi:10.1145/1671403.1671415
van Iersel L, Kelk S, Mnich M (2009) Uniqueness, intractability and exact algorithms: reflections on level-k phylogenetic networks. J Bioinform Comput Biol 7(4):597–623. doi:10.1142/S0219720009004308
van Iersel L, Kelk S, Rupp R, Huson D (2010) Phylogenetic networks do not need to be complex: using fewer reticulations to represent conflicting clusters. Bioinformatics 26(12):i124–i131. doi:10.1093/bioinformatics/btq202
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Science+Business Media New York
About this entry
Cite this entry
Dondi, R., Pirola, Y. (2016). Beyond Evolutionary Trees. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_599
Download citation
DOI: https://doi.org/10.1007/978-1-4939-2864-4_599
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-2863-7
Online ISBN: 978-1-4939-2864-4
eBook Packages: Computer ScienceReference Module Computer Science and Engineering