Auditory Processing in Insects | SpringerLink
Skip to main content

Auditory Processing in Insects

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Auditory pathway; Hearing

Definition

Auditory processing in insects serves to extract relevant information from acoustic signals about identity and location of acoustic objects, usually in the context of mate attraction and predator avoidance. For this goal, insects process spectral information from the carrier frequency of a signal and obtain temporal information from the sound’s amplitude modulation pattern (the envelope). Auditory processing in insects is constrained by size in several aspects: first, the signal often contains ultrasonic frequencies due to small sender size; second, for localization, insects have only poor directional cues because of the small distance between their ears; and third, due to their small brains, the auditory processing capacity is limited to a small number of neurons.

Detailed Description

Overview and Background

Large Diversity of Hearing Insects and Their Ears

The sense of hearing has evolved in vertebrates and arthropods, and hearing organs...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andersson M, Simmons LW (2006) Sexual selection and mate choice. Trends Ecol Evol 21:296–302

    PubMed  Google Scholar 

  • Autrum HJ (1942) Schallempfang bei Mensch und Tier. Naturwissenschaften 5:69–85

    Google Scholar 

  • Barth FG (2002) A spider’s world: senses and behavior. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Benda J, Hennig RM (2008) Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron. J Comput Neurosci 24:113–136

    PubMed  Google Scholar 

  • Benda J, Herz AVM (2003) A universal model for spike-frequency adaptation. Neural Comput 15:2523–2564

    PubMed  Google Scholar 

  • Bennet-Clark HC (1998) Size and scale effects as constraints in insect sound communication. Phil Trans R Soc Lond B 353:407–419

    Google Scholar 

  • Bentley DR, Hoy RR (1972) The genetic control of the neuronal network generating cricket (Teleogryllus gryllus) song pattern. Anim Behav 20:478–492

    PubMed  CAS  Google Scholar 

  • Bernal XE, Rand AS, Ryan MJ (2006) Acoustic preferences and localization performance of blood-sucking flies (Corethrella Coquillett) to tungara frog calls. Behav Ecol 17:709–715

    Google Scholar 

  • Boyan GS, Fullard JH (1988) Information processing at a central synapse suggests a noise filter in the auditory pathway of the noctuid moth. J Comp Physiol A 164:251–258

    PubMed  CAS  Google Scholar 

  • Brown CH (1994) Sound localization. In: Fay RR, Popper AN (eds) Comparative hearing: mammals. Springer, New York/Berlin, pp 57–96

    Google Scholar 

  • Brumm H, Slabbekoorn H (2005) Acoustic communication in noise. Adv Stud Behav 35:151–209

    Google Scholar 

  • Bura VL, Rower VG, Martin PR, Yack JE (2011) Whistling in caterpillars (Amorpha juglandis, Bombycoidea): sound-producing mechanism and function. J Exp Biol 214:30–37

    PubMed  Google Scholar 

  • Bush SL, Schul J (2006) Pulse-rate recognition in an insect: evidence of a role for oscillatory neurons. J Comp Physiol A 192:113–121

    Google Scholar 

  • Clemens J, Hennig RM (2013) Computational principles underlying the recognition of acoustic signals in insects. J Comput Neurosci 35:75–85

    PubMed  Google Scholar 

  • Clemens J, Ronacher B (2013) Feature extraction and integration underlying perceptual decision making during courtship in grasshoppers. J Neurosci 33:12136–12145

    PubMed  CAS  Google Scholar 

  • Clemens J, Kutzki O, Ronacher B, Schreiber S, Wohlgemuth S (2011) Efficient transformation of an auditory population code in a small sensory system. Proc Natl Acad Sci USA 108:13812–13817

    PubMed Central  PubMed  CAS  Google Scholar 

  • Clemens J, Wohlgemuth S, Ronacher B (2012) Nonlinear computations underlying temporal and population sparseness in the auditory system of the grasshopper. J Neurosci 32:10053–10062

    PubMed  CAS  Google Scholar 

  • Creutzig F, Wohlgemuth S, Stumpner A, Benda J, Ronacher B, Herz AVM (2009) Time-scale invariant representation of acoustic communication signals by a bursting neuron. J Neurosci 29:2575–2580

    PubMed  CAS  Google Scholar 

  • Daugman JG (1984) Spatial visual channels in the Fourier plane. Vision Res 24:891–910

    PubMed  CAS  Google Scholar 

  • de Boer E (1985) Auditory time constants: a paradox? In: Michelsen A (ed) Time resolution in auditory systems. Springer, Berlin/Heidelberg, pp 141–157

    Google Scholar 

  • Faure PA, Mason AC, Yack JE (2009) Invertebrate ears and hearing. In: Binder MD, Hirokawa N, Windhorst U, Hirsch MC (eds) Encyclopedia of neuroscience. Springer, Berlin, pp 2035–2042

    Google Scholar 

  • Franz A, Ronacher B (2002) Temperature dependence of temporal resolution in an insect nervous system. J Comp Physiol A 188:261–271

    CAS  Google Scholar 

  • Fullard JH, Yack JE (1993) The evolutionary biology of insect hearing. Trends Ecol Evol 8:248–252

    PubMed  CAS  Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans. University of Chicago Press, Chicago

    Google Scholar 

  • Gollisch T, Herz AVM (2004) Input-driven components of spike-frequency adaptation can be unmasked in vivo. J Neurosci 24:7435–7444

    PubMed  CAS  Google Scholar 

  • Gollisch T, Herz AVM (2005) Disentangling sub-millisecond processes within an auditory transduction chain. PLoS Biol 3(e8):1–11

    Google Scholar 

  • Green DM (1985) Temporal factors in psychoacoustics. In: Michelsen A (ed) Time resolution in auditory systems. Springer, Berlin/Heidelberg, pp 122–140

    Google Scholar 

  • Greenfield MD (1994) Synchronous and alternating choruses in insects and anurans: common mechanisms and diverse functions. Am Zool 34:605–615

    Google Scholar 

  • Greenfield MD, Roizen I (1993) Katydid synchronous chorusing is an evolutionary stable outcome of female choice. Nature 364:618–620

    Google Scholar 

  • Grothe B (2000) The evolution of temporal processing in the medial superior olive, an auditory brainstem structure. Prog Neurobiol 61:581–610

    PubMed  CAS  Google Scholar 

  • Hartbauer M, Kratzer S, Steiner K, Römer H (2005) Mechanisms for synchrony and alternation in song interactions of the bushcricket Mecopoda elongata (Tettigoniidae, Orthoptera). J Comp Physiol A 191:175–188

    Google Scholar 

  • Hennig RM (2003) Acoustic feature extraction by cross-correlation in crickets? J Comp Physiol A 189:589–598

    CAS  Google Scholar 

  • Hennig RM (2009) Walking in Fourier’s space: algorithms for the computation of periodicities in song patterns by the cricket Gryllus bimaculatus. J Comp Physiol A 195:971–987

    Google Scholar 

  • Hennig RM, Franz A, Stumpner A (2004) Processing of auditory information in insects. Microsc Res Tech 63:351–374

    PubMed  CAS  Google Scholar 

  • Hildebrandt KJ (2014) Neural maps in insect versus vertebrate auditory systems. Curr Opin Neurobiol 24:82–87

    PubMed  CAS  Google Scholar 

  • Hildebrandt KJ, Benda J, Hennig RM (2009) The origin of adaptation in the auditory pathway of locusts is specific to cell type and function. J Neurosci 29:2626–2636

    PubMed  CAS  Google Scholar 

  • Hildebrandt KJ, Benda J, Hennig RM (2011) Multiple arithmetic operations in a single neuron: the recruitment of adaptation processes in the cricket auditory pathway depends on sensory context. J Neurosci 31:14142–14150

    PubMed  CAS  Google Scholar 

  • Hoy RR (1989) Startle, categorical response, and attention in acoustic behavior of insects. Ann Rev Neurosci 12:355–375

    PubMed  CAS  Google Scholar 

  • Hoy RR, Popper AN, Fay RR (eds) (1998) Comparative hearing: insects. Springer, New York

    Google Scholar 

  • Huber F (1992) Verhalten und Neurobiologie von stimmbegabten Insekten. Naturwissenschaften 79:393–406

    Google Scholar 

  • Huber F, Markl H (1983) Neuroethology and behavioural physiology: roots and growing points. Springer, Heidelberg/New York

    Google Scholar 

  • Huber F, Moore TE, Loher W (eds) (1989) Cricket behavior and neurobiology. Cornell University Press, Ithaca

    Google Scholar 

  • Hummel J, Kössl M, Nowotny M (2011) Sound-induced tympanal membrane motion in bushcrickets and its relationship to sensory output. J Exp Biol 214:3596–3604

    PubMed  Google Scholar 

  • Janssen R (1992) Thermal influences on nervous system function. Neurosci Biobehav Rev 16:399–413

    PubMed  CAS  Google Scholar 

  • Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84:541–577

    PubMed  CAS  Google Scholar 

  • Konishi M (1990) Similar algorithms in different sensory systems and animals. Cold Spring Harb Symp Quant Biol 55:575–584

    PubMed  CAS  Google Scholar 

  • Kostarakos K, Hedwig B (2012) Calling song recognition in female crickets: temporal tuning of identified brain neurons matches behavior. J Neurosci 32:9601–9612

    Google Scholar 

  • Krahe R, Gabbiani F (2004) Burst firing in sensory systems. Nat Rev Neurosci 5:13–24

    PubMed  CAS  Google Scholar 

  • Krahe R, Ronacher B (1993) Long rise times of sound pulses in grasshopper songs improve the directionality cues received by the CNS from auditory receptors. J Comp Physiol A 173:425–434

    Google Scholar 

  • Lakes-Harlan R, Stölting H, Stumpner A (1999) Convergent evolution of insect hearing organs from a preadaptive structure. Proc R Soc Lond B 266:1161–1167

    Google Scholar 

  • Lehmann GUC, Strauß J, Lakes-Harlan R (2007) Listening when there is no sexual signalling? Maintenance of hearing in the asexual bushcricket Poecilimon intermedius. J Comp Physiol A 193:537–545

    Google Scholar 

  • Machens CK, Stemmler MB, Prinz P, Krahe R, Ronacher B, Herz AVM (2001) Representation of acoustic communication signals by insect auditory receptor neurons. J Neurosci 21:3215–3227

    PubMed  CAS  Google Scholar 

  • Machens CK, Schütze H, Franz A, Stemmler MB, Ronacher B, Herz AVM (2003) Auditory receptor neurons preserve characteristic differences between conspecific communication signals. Nat Neurosci 6:341–342

    PubMed  CAS  Google Scholar 

  • Marquart V (1985) Local interneurons mediating excitation and inhibition onto ascending neurons in the auditory pathway of grasshoppers. Naturwissenschaften 72:42–44

    Google Scholar 

  • Marsat G, Pollack GS (2006) A behavioural role for feature detection by sensory bursts. J Neurosci 26:10542–10547

    PubMed  CAS  Google Scholar 

  • McDonnell MD, Ward LM (2011) The benefits of noise in neural systems: bridging theory and experiment. Nat Rev Neurosci 12:415–425

    PubMed  CAS  Google Scholar 

  • Meier T, Reichert H (1990) Embryonic development and evolutionary origin of the Orthopteran auditory organs. J Neurobiol 21:592–610

    PubMed  CAS  Google Scholar 

  • Michelsen A (1979) Insect ears as mechanical systems. Am Sci 67:696–706

    Google Scholar 

  • Michelsen A (ed) (1985) Time resolution in auditory systems. Springer, Berlin/Heidelberg

    Google Scholar 

  • Michelsen A (1998) Biophysics of sound localization in insects. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer, Berlin/New York, pp 18–62

    Google Scholar 

  • Michelsen A, Larsen ON (1983) Strategies for acoustic communication in complex environments. In: Huber F, Markl H (eds) Neuroethology and behavioural physiology. Springer, Berlin/Heidelberg, pp 321–331

    Google Scholar 

  • Michelsen A, Popov A, Lewis B (1994) Physics of directional hearing in the cricket Gryllus bimaculatus. J Comp Physiol A 175:153–164

    Google Scholar 

  • Miller LA, Surlykke A (2001) How some insects detect and avoid being eaten by bats: tactics and countertactics of prey and predator. BioScience 51:571–582

    Google Scholar 

  • Moiseff A, Pollack G, Hoy R (1978) Steering responses of flying crickets to sound and ultrasound: mate attraction and predator avoidance. Proc Natl Acad Sci USA 75:4052–4056

    PubMed Central  PubMed  CAS  Google Scholar 

  • Montealegre-Z F, Jonsson T, Robson-Brown KA, Postles M, Robert D (2012) Convergent evolution between insect and mammalian audition. Science 338:968–971

    PubMed  CAS  Google Scholar 

  • Nadrowski B, Effertz T, Senthilan PR, Göpfert MC (2011) Antennal hearing in insects – new findings, new questions. Hearing Res 273:7–13

    Google Scholar 

  • Neuhofer D, Stemmler M, Ronacher B (2011) Neuronal precision and the limits for acoustic signal recognition in a small neuronal network. J Comp Physiol A 197:251–265

    Google Scholar 

  • Nolen TG, Hoy RR (1984) Initiation of behavior by single neurons: the role of behavioral context. Science 226:992–994

    PubMed  CAS  Google Scholar 

  • Penzlin H (2005) Lehrbuch der Tierpyhsiologie. Elsevier, München

    Google Scholar 

  • Pohl NU, Slabbekoorn H, Neubauer H, Heil P, Klump GM, Langemann U (2013) Why longer song elements are easier to detect: threshold level-duration functions in the Great Tit and comparison with human data. J Comp Physiol A 199:239–252

    Google Scholar 

  • Pollack GS (1988) Selective attention in an insect auditory neuron. J Neurosci 8:2635–2639

    PubMed  CAS  Google Scholar 

  • Pollack GS, Hoy RR (1979) Temporal pattern as a cue for species-specific calling song recognition in crickets. Science 204:429–432

    PubMed  CAS  Google Scholar 

  • Priebe NJ, Ferster D (2012) Mechanisms of neuronal computation in mammalian visual cortex. Neuron 75:194–208

    PubMed Central  PubMed  CAS  Google Scholar 

  • Prinz P, Ronacher B (2002) Temporal modulation transfer functions in auditory receptor fibres of the locust (Locusta migratoria L.). J Comp Physiol A 188:577–587

    CAS  Google Scholar 

  • Riede K (1987) A comparative study of mating behaviour in some neotropical grasshoppers (Acridoidea). Ethology 76:265–296

    Google Scholar 

  • Riede K, Kämper G, Höfler I (1990) Tympana, auditory thresholds, and projection areas of tympanal nerves in singing and silent grasshoppers (Insects, Acridoidea). Zoomorphology 109:223–230

    Google Scholar 

  • Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1997) Spikes – exploring the neural code. MIT Press, Cambridge, MA

    Google Scholar 

  • Robert D, Göpfert MC (2002) Novel schemes for hearing and orientation in insects. Curr Opin Neurobiol 12:715–720

    PubMed  CAS  Google Scholar 

  • Robert D, Hoy RR (1998) The evolutionary innovation of tympanal hearing in Diptera. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer, New York, pp 197–227

    Google Scholar 

  • Robert D, Miles RN, Hoy RR (1996) Directional hearing by mechanical coupling in the parasitoid fly Ormia ochracea. J Comp Physiol A 179:29–44

    PubMed  CAS  Google Scholar 

  • Robertson RM, Money TG (2012) Temperature and neuronal circuit function: compensation, tuning and tolerance. Curr Opin Neurobiol 22:724–734

    PubMed  CAS  Google Scholar 

  • Römer H (1976) Die Informationsverarbeitung tympanaler Rezeptorelemente von Locusta migratoria. J Comp Physiol A 109:101–122

    Google Scholar 

  • Römer H (1983) Tonotopic organization of the auditory neuropile in the bushcricket Tettigonia viridissima. Nature 306:60–62

    Google Scholar 

  • Römer H (2001) Ecological constraints for sound communication: from grasshoppers to elephants. In: Barth FG, Schmid A (eds) Ecology of sensing. Springer, Berlin/Heidelberg/New York, pp 59–77

    Google Scholar 

  • Römer H, Krusch M (2000) A gain-control mechanism for processing of chorus sounds in the afferent auditory pathway of the bushcricket Tettigonia viridissima (Orthoptera, Tettigoniidae). J Comp Physiol A 186:181–191

    PubMed  Google Scholar 

  • Römer H, Lewald J (1992) High-frequency sound transmission in natural habitats: implications for the evolution of insect acoustic communication. Behav Ecol Sociobiol 29:437–444

    Google Scholar 

  • Römer H, Marquart V, Hardt M (1988) Organization of a sensory neuropile in the auditory pathway of two groups of Orthoptera. J Comp Neurol 275:201–215

    PubMed  Google Scholar 

  • Römer H, Bailey WJ, Dadour I (1989) Insect hearing in the field: III masking by noise. J Comp Physiol A 164:609–620

    Google Scholar 

  • Römer H, Spickermann M, Bailey W (1998) Sensory basis for sound intensity discrimination in the bushcricket Requena verticalis (Tettigoniidae, Orthoptera). J Comp Physiol A 182:595–607

    Google Scholar 

  • Ronacher B (2013) Processing of species-specific signals in the auditory pathway of grasshoppers. In: Hedwig B (ed) Insect hearing and acoustic communication. Springer, Berlin, Heidelberg, pp. 185–204

    Google Scholar 

  • Ronacher B, Krahe R (2000) Temporal integration vs. parallel processing: coping with the variability of neuronal messages in directional hearing of insects. Eur J Neurosci 12:2147–2156

    PubMed  CAS  Google Scholar 

  • Ronacher B, Stumpner A (1988) Filtering of behaviourally relevant temporal parameters of a grasshopper´s song by an auditory interneuron. J Comp Physiol A 163:517–523

    Google Scholar 

  • Ronacher B, von Helversen D, von Helversen O (1986) Routes and stations in the processing of auditory directional information in the CNS of a grasshopper, as revealed by surgical experiments. J Comp Physiol A 158:363–374

    Google Scholar 

  • Ronacher B, Franz A, Wohlgemuth S, Hennig H (2004) Variability of spike trains and the processing of temporal patterns of acoustic signals–problems, constraints, and solutions. J Comp Physiol A 190:257–277

    CAS  Google Scholar 

  • Schildberger K (1984) Temporal selectivity of identified auditory neurons in the cricket brain. J Comp Physiol A 155:171–185

    Google Scholar 

  • Schildberger K (1994) The auditory pathway of crickets: adaptations for intraspecific acoustic communication. In: Schildberger K, Elsner N (eds) Neural basis of behavioural adaptations. G Fischer, Stuttgart, pp 209–225

    Google Scholar 

  • Schildberger K, Elsner N (1994) Neural basis of behavioural adaptations. G. Fischer, Stuttgart

    Google Scholar 

  • Schmidt A, Ronacher B, Hennig RM (2008) The role of frequency, phase and time for processing amplitude modulated signals by grasshoppers. J Comp Physiol A 194:221–233

    CAS  Google Scholar 

  • Schmidt AKD, Riede K, Römer H (2011) High background noise shapes selective auditory filters in a tropical cricket. J Exp Biol 214:1754–1762

    PubMed  PubMed Central  Google Scholar 

  • Schneider E, Hennig RM (2012) Temporal resolution for calling song signals by female crickets, Gryllus bimaculatus. J Comp Physiol A 198:181–191

    CAS  Google Scholar 

  • Schul J, Sheridan RA (2006) Auditory stream segregation in an insect. Neuroscience 138:1–4

    PubMed  CAS  Google Scholar 

  • Schul J, von Helversen D, Weber T (1998) Selective phonotaxis in Tettigonia cantans and T. viridissima in song recognition and discrimination. J Comp Physiol A182:687–694

    Google Scholar 

  • Selverston A, Kleindienst H-U, Huber F (1985) Synaptic connectivity between cricket auditory interneurons as studied by selective photoinactivation. J Neurosci 5:1283–1292

    PubMed  CAS  Google Scholar 

  • Senthilan PR, Piepenbrock D, Ovezmyradov G, Nadrowski B, Bechstedt S, Pauls S, Winkler M, Möbius W, Howard J, Göpfert MC (2012) Drosophila auditory organ genes and genetic hearing defects. Cell 150:1042–1054

    PubMed  CAS  Google Scholar 

  • Siegert ME, Römer H, Hashim R, Hartbauer M (2011) Neuronal correlates of a preference for leading signals in the synchronizing bushcricket Mecopoda elongata (Orthoptera: Tettigoniidae). J Exp Biol 214:3924–3934

    PubMed Central  PubMed  CAS  Google Scholar 

  • Simoncelli E, Olshausen B (2001) Natural image statistics and neural representation. Annu Rev Neurosci 24:1193–1216

    PubMed  CAS  Google Scholar 

  • Smith EC, Lewicki MS (2006) Efficient auditory coding. Nature 439:978–982

    PubMed  CAS  Google Scholar 

  • Stabel J, Wendler G, Scharstein H (1989) Cricket phonotaxis: localization depends on recognition of the calling song pattern. J Comp Physiol A 165:165–177

    Google Scholar 

  • Stölting H, Stumpner A (1998) Tonotopic organization of auditory receptors of the bushcricket Pholidoptera griseoaptera (Tettigoniidae, Decticinae). Cell Tissue Res 294:377–386

    PubMed  Google Scholar 

  • Stumpner A (1996) Tonotopic organization of the hearing organ in a bushcricket. Naturwissenschaften 83:81–84

    CAS  Google Scholar 

  • Stumpner A (1997) An auditory interneurone tuned to the male song frequency in the duetting bushcricket Ancistrura nigrovittata (Orthoptera, Phaneropteridae). J Exp Biol 200:1089–1101

    PubMed  Google Scholar 

  • Stumpner A, Lakes-Harlan R (1996) Auditory interneurons in a hearing fly (Therobia leonidei, Ormiini, Tachinidae, Diptera). J Comp Physiol A 178:227–233

    Google Scholar 

  • Stumpner A, von Helversen D (2001) Evolution and function of auditory systems in insects. Naturwissenschaften 88:159–170

    PubMed  CAS  Google Scholar 

  • Suga N, Zhang Y, Yan J (1997) Sharpening of frequency tuning by inhibition in the thalamic auditory nucleus of the mustached bat. J Neurophysiol 77:2098–2114

    PubMed  CAS  Google Scholar 

  • Tougaard J (1998) Detection of short pure-tone stimuli in the noctuid ear: what are temporal integration and integration time all about? J Comp Physiol A 183:563–572

    Google Scholar 

  • van Rossum MCW (2001) A novel spike distance. Neural Comput 13:751–763

    PubMed  Google Scholar 

  • van Staaden MJ, Römer H (1998) Evolutionary transition from stretch to hearing organs in ancient grasshoppers. Nature 394:773–776

    Google Scholar 

  • Viemeister NF, Plack CJ (1993) Time analysis. In: Yost WA, Popper AN, Fay RR (eds) Human psychophysics. Springer, Berlin/Heidelberg/New York, pp 116–154

    Google Scholar 

  • Viemeister NF, Wakefield GH (1991) Temporal integration and multiple looks. J Acoust Soc Am 90:858–865

    PubMed  CAS  Google Scholar 

  • Vogel A, Ronacher B (2007) Neural correlations increase between consecutive processing levels in the auditory system of locusts. J Neurophysiol 97:3376–3385

    PubMed  CAS  Google Scholar 

  • Vogel A, Hennig RM, Ronacher B (2005) Increase of neuronal response variability at higher processing levels as revealed by simultaneous recordings. J Neurophysiol 93:3548–3559

    PubMed  CAS  Google Scholar 

  • von Helversen D (1972) Gesang des Männchens und Lautschema des Weibchens bei der Feldheuschrecke Chorthippus biguttulus (Orthoptera, Acrididae). J Comp Physiol 81:381–422

    Google Scholar 

  • von Helversen D (1984) Parallel processing in auditory pattern recognition and directional analysis by the grasshopper Chorthippus biguttulus L (Acrididae). J Comp Physiol A 154:837–846

    Google Scholar 

  • von Helversen D (1997) Acoustic communication and orientation in grasshoppers. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhäuser, Basel, pp 301–341

    Google Scholar 

  • von Helversen D, Rheinlaender (1988) Interaural intensity and time discrimination in an unrestrained grasshopper: a tentative behavioural approach. J Comp Physiol A 162:333–340

    Google Scholar 

  • von Helversen D, von Helversen O (1975a) Verhaltensgenetische Untersuchungen am akustischen Kommunikationssystem der Feldheuschrecken (Orthoptera, Acrididae). I. Der Gesang von Artbastarden zwischen Chorthippus biguttulus und C. mollis. J Comp Physiol 104:273–299

    Google Scholar 

  • von Helversen D, von Helversen O (1975b) Verhaltensgenetische Untersuchungen am akustischen Kommunikationssystem der Feldheuschrecken (Orthoptera, Acrididae). II. Das Lautschema von Artbastarden zwischen Chorthippus biguttulus und C. mollis. J Comp Physiol 104:301–323

    Google Scholar 

  • von Helversen D, von Helversen O (1995) Acoustic pattern recognition and orientation in orthopteran insects: parallel or serial processing. J Comp Physiol A 177:767–774

    Google Scholar 

  • von Helversen D, von Helversen O (1997) Recognition of sex in the acoustic communication of the grasshopper Chorthippus biguttulus (Orthoptera, Acrididae). J Comp Physiol A 180:373–386

    Google Scholar 

  • von Helversen D, von Helversen O (1998) Acoustic pattern recognition in a grasshopper: processing in the frequency or time domain? Biol Cybern 79:467–476

    Google Scholar 

  • von Helversen O, von Helversen D (1987) Innate receiver mechanisms in the acoustic communication of orthopteran insects. In: Guthrie DM (ed) Aims and methods in neuroethology. Manchester Univ Press, Manchester, pp 104–150

    Google Scholar 

  • von Helversen O, von Helversen D (1994) Forces driving coevolution of song and song recognition in grasshoppers. In: Schildberger K, Elsner N (eds) Neural basis of behavioural adaptations. G. Fischer, Stuttgart, pp 253–284

    Google Scholar 

  • Webb B, Wessnitzer J, Bush SL, Schul J, Buchli J, Ijspeert A (2007) Resonant neurons and bushcricket behaviour. J Comp Physiol A 193:285–288

    Google Scholar 

  • Weber T, Thorson J (1989) Phonotactic behavior of walking crickets. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Cornell University Press, Ithaca, pp 310–339

    Google Scholar 

  • Wendler G (1989) Acoustic orientation in crickets in the presence of two sound sources. Naturwissenschaften 76:128–129

    Google Scholar 

  • Wiley RH (2006) Signal detection and animal communication. Adv Study Behav 36:217–247

    Google Scholar 

  • Windmill JFG, Göpfert MC, Robert D (2005) Tympanal travelling waves in migratory locusts. J Exp Biol 208:157–168

    PubMed  Google Scholar 

  • Wohlgemuth S, Ronacher B (2007) Auditory discrimination of amplitude modulations based on metric distances of spike trains. J Neurophysiol 97:3082–3092

    PubMed  Google Scholar 

  • Wohlgemuth S, Vogel A, Ronacher B (2011) Encoding of amplitude modulations by auditory neurons of the locust: influence of modulation frequency, rise time, and modulation depth. J Comp Physiol A 197:61–74

    Google Scholar 

  • Yost WA (2000) Fundamentals of hearing – an introduction. Academic, San Diego/New York

    Google Scholar 

  • Zorović M, Hedwig B (2011) Processing of species-specific auditory patterns in the cricket brain by ascending, local, and descending neurons during standing and walking. J Neurophysiol 105:2181–2194

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

We want to thank the members of our lab who contributed to several of the cited studies. Special thanks are due to Dr. Michael Reichert who gave helpful advice on the English style and substantially improved the manuscript, as well as to an anonymous reviewer whom we owe many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Matthias Hennig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Hennig, R.M., Ronacher, B. (2013). Auditory Processing in Insects. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_321-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_321-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics