Abstract
This review article gives an overview on adaptive filtering methods based on channel representations. The framework of channel representations and its relation to density estimation is introduced. The fast and accurate scheme of virtual shift decoding is introduced and applied in several variants of channel smoothing:
-
channel smoothing with alpha-synthesis for improving stability of edge-enhancing filtering
-
orientation adaptive channel smoothing with applications to coherence-enhancing filtering
-
channel smoothing using graph-cuts for improving filtering results at corners
-
channel-coded feature maps (CCFMs) which lead to a significant speed-up of channel averaging
-
CCFM-based smoothing based on optimal parameters derived from a novel uncertainty relation
For each method, an algorithmic description and some examples of results are provided, together with discussions and references of the original papers. Cross connections to other articles in this volume are given where appropriate.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)
Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)
Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41(7), 909–996 (1988)
Duits, R., Florack, L., de Graaf, J., ter Haar Romeny, B.: On the axioms of scale space theory. J. Math. Imaging Vis. 20(3), 267–298 (2004)
Duits, R., Felsberg, M., Granlund, G., ter Haar Romeny, B.M.: Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the Euclidean motion group. Int. J. Comput. Vis. 72(1), 79–102 (2007)
Elder, J.H., Zucker, S.W.: Local scale control for edge detection and blur estimation. IEEE Trans. Pattern Anal. Mach. Intell. 20(7), 699–716 (1998)
Felsberg, M.: Wiener channel smoothing: Robust Wiener filtering of images. In: DAGM 2005. Lecture Notes in Computer Science, vol. 3663, pp. 468–475. Springer, Berlin (2005)
Felsberg, M.: Extending graph-cut to continuous value domain minimization. In: Proceedings of the 4th Canadian Conference on Computer and Robot Vision, pp. 274–281 (2007)
Felsberg, M.: On the relation between anisotropic diffusion and iterated adaptive filtering. In: 30th DAGM Symposium Mustererkennung. Lecture Notes in Computer Science, vol. 5096, pp. 436–445. Springer, Berlin (2008)
Felsberg, M.: Spatio-featural scale-space. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) Scale Space and Variational Methods in Computer Vision: Proceedings of the 2nd International Conference, SSVM 2009, Voss, Norway, June 1–5, 2009. Lecture Notes in Computer Science, vol. 5567, pp. 808–819. Springer, Berlin (2009)
Felsberg, M., Granlund, G.: Anisotropic channel filtering. In: Proceedings of the 13th Scandinavian Conference on Image Analysis. Lecture Notes in Computer Science, vol. 2749, pp. 755–762 (2003)
Felsberg, M., Granlund, G.: P-channels: robust multivariate M-estimation of large datasets. In: Proceedings of the 18th International Conference on Pattern Recognition, ICPR’06, Hong Kong, August 20–24, 2006, pp. 262–267 (2006)
Felsberg, M., Sommer, G.: The monogenic scale-space: a unifying approach to phase-based image processing in scale-space. J. Math. Imaging Vis. 21, 5–26 (2004)
Felsberg, M., Forssén, P.-E., Scharr, H.: Channel smoothing: efficient robust smoothing of low-level signal features. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 209–222 (2006)
Felsberg, M., Kalkan, S., Krüger, N.: Continuous dimensionality characterization of image structures. Image Vis. Comput. 27(6), 628–636 (2009)
Forssén, P.-E.: Low and medium level vision using channel representations. PhD thesis, Linköping University, Sweden (2004)
Forssén, P.-E., Granlund, G.: Robust multi-scale extraction of blob features. In: Proceedings of the 13th Scandinavian Conference on Image Analysis. Lecture Notes in Computer Science, vol. 2749, pp. 11–18 (2003)
Förstner, W.: Image preprocessing for feature extraction in digital intensity, color and range images. In: Dermanis, A., Grün, A., Sansò, F. (eds.) Proceedings of the International Summer School on Data Analysis and the Statistical Foundation of Geomatics, Chania, Crete, Greece, May 25–30, 1998. Lecture Notes on Earth Sciences, pp. 165–189. Springer, Berlin (1998)
Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)
Granlund, G.H.: In search of a general picture processing operator. Comput. Graph. Image Process. 8, 155–173 (1978)
Granlund, G.H.: An associative perception-action structure using a localized space variant information representation. In: Proceedings of the International Workshop on Algebraic Frames for the Perception-Action Cycle. Lecture Notes in Computer Science, vol. 1888, pp. 48–68. Springer, Heidelberg (2000)
Howard, I.P., Rogers, B.J.: Binocular Vision and Stereopsis. Oxford University Press, Oxford (1995)
Iijima, T.: Basic theory of pattern observation. In: Papers of Technical Group on Automata and Automatic Control, IECE, Japan, December, 1959
Jonsson, E.: Channel-coded feature maps for computer vision and machine learning. PhD thesis, Linköping University, Sweden, SE-581 83 Linköping, Sweden (February 2008). Dissertation No. 1160, ISBN 978-91-7393-988-1
Jonsson, E., Felsberg, M.: Reconstruction of probability density functions from channel representations. In: Proceedings of the 14th Scandinavian Conference on Image Analysis (2005)
Jonsson, E., Felsberg, M.: Accurate interpolation in appearance-based pose estimation. In: Ersbøll, B.K., Steenstrup Pedersen, K. (eds.) Proceedings of the 15th Scandinavian Conference on Image Analysis, Aalborg, Denmark, June 10–14, 2007. Lecture Notes in Computer Science, vol. 4522, pp. 1–10. Springer, Berlin (2007)
Jonsson, E., Felsberg, M.: Efficient computation of channel-coded feature maps through piecewise polynomials. Image Vis. Comput. 27(11), 1688–1694 (2009)
Knutsson, H., Westin, C.-F.: Normalized convolution: technique for filtering incomplete and uncertain data. In: Høgda, K.A., Braathen, B., Heia, K. (eds.) Proceedings of the 8th Scandinavian Conference on Image Analysis, Tromsø, Norway, May 25–28, 1993, pp. 997–1006. NOBIM, Tromsø (1993)
Knutsson, H., Wilson, R., Granlund, G.H.: Anisotropic non-stationary image estimation and its applications: Part I—restoration of noisy images. IEEE Trans. Commun. COM–31(3), 388–397 (1983)
Koenderink, J.J.: The structure of images. Biol. Cybern. 50, 363–370 (1984)
Koenderink, J.J., van Doorn, A.D.: Image processing done right. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) Proceedings of the 7th European Conference on Computer Vision, Copenhagen, Denmark, May–June 2002. Lecture Notes in Computer Science, vols. 2350–2353, pp. 158–172. Springer, Berlin (2002)
Lindeberg, T.: Scale-Space Theory in Computer Vision. The Kluwer International Series in Engineering and Computer Science. Kluwer Academic, Dordrecht (1994)
Lüdtke, N.L., Wilson, R.C., Hancock, E.R.: Probabilistic population coding of multiple edge orientation. In: Proceedings of the 9th International Conference on Image Processing, Rochester, NY, USA, September 22–25, 2002, pp. 865–868. IEEE Press, New York (2002)
Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)
Paris, S., Durand, F.: A fast approximation of the bilateral filter using a signal processing approach. Int. J. Comput. Vis. 81(1), 24–52 (2009)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)
Portilla, J., Strela, V., Wainwright, J., Simoncelli, E.P.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)
Pouget, A., Dayan, P., Zemel, R.: Information processing with population codes. Nat. Rev., Neurosci. 1, 125–132 (2000)
Rozenholc, Y., Reiß, M., Balvay, D., Cuenod, C.-A.: Growing time homogeneous neighborhoods for denoising and clustering dynamic contrast enhanced-CT sequences. Technical report, University Paris Descartes (2009)
Scharr, H., Felsberg, M., Forssén, P.-E.: Noise adaptive channel smoothing of low-dose images. In: Proceedings of the 2003 Conference on Computer Vision and Pattern Recognition Workshop, CVPRW’03, pp. 1–8 (2003)
Therrien, C.W.: Decision, Estimation, and Classification: An Introduction Into Pattern Recognition and Related Topics. Wiley, New York (1989)
van den Boomgaard, R.: Nonlinear diffusion in computer vision. http://staff.science.uva.nl/~rein/nldiffusionweb/material.html
Weickert, J.: Theoretical foundations of anisotropic diffusion in image processing. Comput. Suppl. 11, 221–236 (1996)
Weickert, J., Scharr, H.: A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance. J. Vis. Commun. Image Represent. 13(1–2), 103–118 (2002). Special Issue on Partial Differ. Equ. Image Process., Comput. Vis. Comput. Graph.
Weickert, J., Ishikawa, S., Imiya, A.: Linear scale-space has first been proposed in Japan. J. Math. Imaging Vis. 10(3), 237–252 (1999)
Witkin, A.P.: Scale-space filtering. In: Proceedings of the International Joint Conference on Artificial Intelligence, Karlsruhe, Germany, pp. 1019–1022 (1983)
Zemel, R.S., Dayan, P., Pouget, A.: Probabilistic interpretation of population codes. Neural Comput. 10(2), 403–430 (1998)
Acknowledgements
The author would like to thank P.-E. Forssén for various discussions about the paper, in particular on alpha-synthesis. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreements no 215078 (DIPLECS) and 247947 (GARNICS) as well as the VR project 2009-4282.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag London Limited
About this chapter
Cite this chapter
Felsberg, M. (2012). Adaptive Filtering Using Channel Representations. In: Florack, L., Duits, R., Jongbloed, G., van Lieshout, MC., Davies, L. (eds) Mathematical Methods for Signal and Image Analysis and Representation. Computational Imaging and Vision, vol 41. Springer, London. https://doi.org/10.1007/978-1-4471-2353-8_2
Download citation
DOI: https://doi.org/10.1007/978-1-4471-2353-8_2
Published:
Publisher Name: Springer, London
Print ISBN: 978-1-4471-2352-1
Online ISBN: 978-1-4471-2353-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)