Article Outline
Keywords
Statement of the Result
Affine Problems
Nonlinear Problems
Integral Equations Example
See also
References
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anselone PM (1971) Collectively compact operator approximation theory. Prentice-Hall, Englewood Cliffs, NJ
Atkinson KE (1973) Iterative variants of the Nyström method for the numerical solution of integral equations. Numer Math 22:17–31
Banach S (1922) Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fundam Math 3:133–181
Brakhage H (1960) Über die numerische Behandlung von Integralgleichungen nach der Quadraturformelmethode. Numer Math 2:183–196
Briggs W (1987) A multigrid tutorial. SIAM, Philadelphia
Campbell SL, Ipsen ICF, Kelley CT, Meyer CD, Xue ZQ (1996) Convergence estimates for solution of integral equations with GMRES. J Integral Eq Appl 8:19–34
Dennis JE, Schnabel RB (1996) Numerical methods for nonlinear equations and unconstrained optimization. Classics Appl Math, vol 16, SIAM, Philadelphia
Golub GH, VanLoan CG (1983) Matrix computations. Johns Hopkins Univ. Press, Baltimore, MD
Hackbusch W (1985) Multi-grid methods and applications. Comput Math, vol 4. Springer, Berlin
Isaacson E, Keller HB (1966) Analysis of numerical methods. Wiley, New York
Kelley CT (1990) Operator prolongation methods for nonlinear equations. In: Allgower EL, Georg K (eds) Computational Solution of Nonlinear Systems of Equations. Lect Appl Math Amer Math Soc, Providence, RI, pp 359–388
Kelley CT (1995) A fast multilevel algorithm for integral equations. SIAM J Numer Anal 32:501–513
Kelley CT (1995) Iterative methods for linear and nonlinear equations. No. in Frontiers in Appl Math, vol 16 SIAM, Philadelphia
Ortega JM, Rheinboldt WC (1970) Iterative solution of nonlinear equations in several variables. Acad Press, New York
Saad Y, Schultz MH (1986) GMRES a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Statist Comput 7:856–869
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag
About this entry
Cite this entry
Kelley, C.T. (2008). Contraction-Mapping . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_92
Download citation
DOI: https://doi.org/10.1007/978-0-387-74759-0_92
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-74758-3
Online ISBN: 978-0-387-74759-0
eBook Packages: Mathematics and StatisticsReference Module Computer Science and Engineering